Background: Pseudomyxoma peritonei (PMP) is a rare malignant disease, most commonly originating from appendiceal lesions and characterized by accumulation of mucinous tumor tissue in the peritoneal cavity. Since the disease is infrequent, the task of carrying out studies of treatment efficacy and disease biology in the clinical setting is challenging, warranting the development of relevant in vitro and in vivo PMP models.

Methods: Human tumor tissue was implanted in the peritoneal cavity of nude mice to establish two orthotopic models exhibiting noninvasive intraperitoneal growth without metastasis development.

Results: Xenograft tissues have retained essential properties of the original human tumors, such as macro- and microscopic growth patterns, mucin production as well as expression of carcinoembryonal antigen, cytokeratins 20 and 7 and the proliferation marker pKi67. Upon microscopic examination, the human tumors were categorized as the PMCA-I (peritoneal mucinous carcinomatosis of intermediate features) subtype, which was conserved through 14 examined passages in mice, for the first time modeling this particular histopathologic category.

Conclusion: In conclusion, two novel orthotopic models of human PMP have been established that consistently portray a distinct histopathologic subtype and reflect essential human tumor properties. Xenografts can easily and reproducibly be transferred to new generations of mice with acceptable passage periods, rendering the models as attractive tools for further studies of PMP biology and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920528PMC
http://dx.doi.org/10.1186/1471-2407-7-116DOI Listing

Publication Analysis

Top Keywords

novel orthotopic
8
histopathologic subtype
8
tumor tissue
8
peritoneal cavity
8
human tumor
8
orthotopic models
8
human tumors
8
human
5
pseudomyxoma peritonei--two
4
peritonei--two novel
4

Similar Publications

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

Chemoresistance is an important factor in multiple myeloma (MM) relapse and overall survival. However, the mechanism underlying resistance remains unclear. In this study, we identified adenine nucleotide translocase 3 (ANT3) as a novel biomarker and therapeutic target for MM progression and resistance to the proteasome inhibitor bortezomib (BTZ).

View Article and Find Full Text PDF

HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment.

Int Immunopharmacol

December 2024

Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China. Electronic address:

Article Synopsis
  • The tumor microenvironment (TME) significantly impacts glioma progression, particularly through features like hypoxia and immunosuppression, although the relationship between hypoxia and immune response in glioma is not fully understood.
  • Researchers identified HSPA5 as a key gene linked to glioma prognosis, associated with higher levels in tumors, poor outcomes, and the promotion of malignant traits via the HIF-1α/HSPA5 pathway.
  • Targeting HSPA5 may offer a new therapeutic approach by reducing hypoxia tolerance and modifying tumor-associated macrophages (TAMs) to an M1 phenotype, potentially enhancing anti-tumor immunity.
View Article and Find Full Text PDF

A Novel Machine Perfusion System for Enhancing Hepatic Microcirculation Perfusion.

Artif Organs

December 2024

Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Machine perfusion is a promising strategy for safeguarding liver transplants donated after cardiac death (DCD). In this study, we developed and validated a novel machine perfusion approach for mitigating risk factors and salvaging severe DCD livers.

Methods: A novel hypothermic oxygenated perfusion (HOPE) system was developed, incorporating two pumps and an elastic water sac to emulate the functionality of the cardiac cycle.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!