The aim of this research is to clarify the influence of the viscosity of the nasal formulation on in vivo nasal drug absorption and its mechanism using an in vitro Caco-2 system. The drug solution was made viscous by the addition of dextran (Dex). The disappearance of FITC-labeled Dextran (FD, a marker of the dosing solution) applied with control solution followed monoexponential kinetics, while FD applied with Dex solution showed biexponential elimination. The mean residence time of FD in the nasal cavity was increased with the increase in Dex concentration. The nasal absorption of acyclovir was similar in the formulation with low viscosity, increased in the formulation with moderate viscosity and markedly decreased in the formulation with high viscosity. The result from the normal Caco-2 transport study could not explain the relation of in vivo drug absorption with viscosity, while the modified Caco-2 system provided data partly reflecting the change in in vivo absorption in rats. In conclusion, the residence of the applied solution in the nasal cavity was enhanced by the addition of Dex in a viscosity-dependent manner. Moderate viscosity of the dosing solution improved the in vivo nasal absorption of acyclovir, while higher viscosity decreased it.

Download full-text PDF

Source
http://dx.doi.org/10.2133/dmpk.22.206DOI Listing

Publication Analysis

Top Keywords

drug absorption
12
viscosity
8
vivo nasal
8
caco-2 system
8
dosing solution
8
nasal cavity
8
nasal absorption
8
absorption acyclovir
8
moderate viscosity
8
nasal
7

Similar Publications

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.

View Article and Find Full Text PDF

Anesthetics are crucial in surgical procedures and therapeutic interventions, but they come with side effects and varying levels of effectiveness, calling for novel anesthetic agents that offer more precise and controllable effects. Targeting Gamma-aminobutyric acid (GABA) receptors, the primary inhibitory receptors in the central nervous system, could enhance their inhibitory action, potentially reducing side effects while improving the potency of anesthetics. In this study, we introduce a proteomic learning of GABA receptor-mediated anesthesia based on 24 GABA receptor subtypes by considering over 4000 proteins in protein-protein interaction (PPI) networks and over 1.

View Article and Find Full Text PDF

Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.

Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.

View Article and Find Full Text PDF

Synthetic antidiabetic drugs are often associated with various adverse side effects, including hypoglycemia, nausea, gastrointestinal disturbances, headaches, and even liver damage. In contrast, plant-derived natural antidiabetic bioactive compounds typically exhibit lower toxicity and fewer side effects and have been reported to aid effectively in diabetes management. These plant extracts regulate diabetes by restoring pancreatic function, enhancing insulin secretion, inhibiting intestinal glucose absorption, and facilitating insulin dependent metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!