A previous study of histone H3 in Saccharomyces cerevisiae identified a mutant with a single amino acid change, leucine 61 to tryptophan, that confers several transcriptional defects. We now present several lines of evidence that this H3 mutant, H3-L61W, is impaired at the level of transcription elongation, likely by altered interactions with the conserved factor Spt16, a subunit of the transcription elongation complex yFACT. First, a selection for suppressors of the H3-L61W cold-sensitive phenotype has identified novel mutations in the gene encoding Spt16. These genetic interactions are allele specific, suggesting a direct interaction between H3 and Spt16. Second, similar to several other elongation and chromatin mutants, including spt16 mutants, an H3-L61W mutant allows transcription from a cryptic promoter within the FLO8 coding region. Finally, chromatin-immunoprecipitation experiments show that in an H3-L61W mutant there is a dramatically altered profile of Spt16 association over transcribed regions, with reduced levels over 5'-coding regions and elevated levels over the 3' regions. Taken together, these and other results provide strong evidence that the integrity of histone H3 is crucial for ensuring proper distribution of Spt16 across transcribed genes and suggest a model for the mechanism by which Spt16 normally dissociates from DNA following transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013732 | PMC |
http://dx.doi.org/10.1534/genetics.106.067140 | DOI Listing |
Nucleic Acids Res
December 2024
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
The histone chaperone FAcilitates Chromatin Transcription (FACT) is a heterodimeric complex consisting of Spt16 and Pob3, crucial for preserving nucleosome integrity during transcription and DNA replication. Loss of FACT leads to cryptic transcription and heterochromatin defects. FACT was shown to interact with Abo1, an AAA + family histone chaperone involved in nucleosome dynamics.
View Article and Find Full Text PDFJ Exp Bot
November 2024
Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
The elongation phase is a dynamic and highly regulated step of the RNA polymerase II (RNAPII) transcription cycle. A variety of transcript elongation factors (TEFs) comprising regulators of RNAPII activity, histone chaperones and modulators of histone modifications assist transcription through chromatin. Thereby TEFs substantially contribute to establish gene expression patterns during plant growth and development.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
Biochem Biophys Res Commun
December 2024
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea. Electronic address:
The transcriptional regulation of p53-dependent genes in response to DNA damage is critical for effective DNA repair and cell survival. We previously established that RSF1 (remodeling and spacing factor 1) is necessary for p53-dependent gene transcription in response to DNA strand breaks. Here, we further elucidate that the role of RSF1 in p53 regulation by demonstrating that its depletion results in a reduction in the acetylated-Lys(K)382 level of p53, which governs its transcriptional activity.
View Article and Find Full Text PDFBMC Res Notes
August 2024
Biology Department, Hendrix College, Conway, AR, 72032, USA.
Objective: In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!