A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiological hyperinsulinemia has no detectable effect on access of macromolecules to insulin-sensitive tissues in healthy humans. | LitMetric

Objective: Physiologically elevated insulin concentrations promote access of macromolecules to skeletal muscle in dogs. We investigated whether insulin has a stimulating effect on the access of macromolecules to insulin-sensitive tissues in humans as well.

Research Design And Methods: In a randomized, controlled trial, euglycemic-hyperinsulinemic clamp (1.2 mU x kg(-1) x min(-1) insulin) and saline control experiments were performed in 10 healthy volunteers (aged 27.5 +/- 4 years, BMI 22.6 +/- 1.6 kg/m(2)). Distribution and clearance parameters of inulin were determined in a whole-body approach, combining primed intravenous infusion of inulin with compartment modeling. Inulin kinetics were measured in serum using open-flow microperfusion in interstitial fluid of femoral skeletal muscle and subcutaneous adipose tissue.

Results: Inulin kinetics in serum were best described using a three-compartment model incorporating a serum and a fast and a slow equilibrating compartment. Inulin kinetics in interstitial fluid of peripheral insulin-sensitive tissues were best represented by the slow equilibrating compartment. Serum and interstitial fluid inulin kinetics were comparable between the insulin and saline groups. Qualitative analysis of inulin kinetics was confirmed by model-derived distribution and clearance parameters of inulin. Physiological hyperinsulinemia (473 +/- 6 vs. 18 +/- 2 pmol/l for the insulin and saline group, respectively; P < 0.001) indicated no effect on distribution volume (98.2 +/- 6.2 vs. 102.5 +/- 5.7 ml/kg; NS) or exchange parameter (217.6 +/- 34.2 vs. 243.1 +/- 28.6 ml/min; NS) of inulin to peripheral insulin-sensitive tissues. All other parameters identified by the model were also comparable between the groups.

Conclusions: Our data suggest that in contrast to studies performed in dogs, insulin at physiological concentrations does not augment recruitment of insulin-sensitive tissues in healthy humans.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db07-0238DOI Listing

Publication Analysis

Top Keywords

insulin-sensitive tissues
20
inulin kinetics
20
access macromolecules
12
insulin saline
12
interstitial fluid
12
inulin
9
physiological hyperinsulinemia
8
macromolecules insulin-sensitive
8
tissues healthy
8
healthy humans
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!