Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is a pressing need for new therapeutic, diagnostic, and drug delivery approaches for treating brain cancers. Nanotechnology offers a new method for targeted brain cancer therapy and could play a major role in gene and drug delivery. The goals of our study were to visualize in vitro ingestion, cytotoxicity, and loading capacity of Multi-Walled Carbon Nanotubes (MWCNTs) in microglia. Furthermore, we investigated internalization differences between microglia and glioma cells. BV2 microglia and GL261 glioma cells were incubated with MWCNTs, which were synthesized through catalytic chemical vapor deposition technique. Real-time RT-PCR, cell proliferation analysis, siRNA and DNA loading, electron microscopy, and flow cytometry were performed. We demonstrated that MWCNTs do not result in proliferative or cytokine changes in vitro, are capable of carrying DNA and siRNA and are internalized at higher levels in phagocytic cells as compared to tumor cells. This study suggests MWCNTs could be used as a novel, non-toxic, and biodegradable nano-vehicles for targeted therapy in brain cancers. Further studies are needed to demonstrate the full capacity of MWCNTs as nanovectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2007.03.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!