Many taxonomically diverse plant species are attacked by Erwinia chrysanthemi, a member of the causal agents of soft-rotting diseases. Symptom development is due to the collective action of pectin-degrading enzymes secreted by the bacterium through a type II secretion system (T2SS). Using Arabidopsis thaliana as a susceptible host, we show that plants respond to E. chrysanthemi 3937 by expressing cell-wall reactions, production of an oxidative burst, and activation of salicylic acid (SA) and jasmonic acid (JA) or ethylene (ET) signaling pathways. We found that the oxidative burst is mainly generated via the expression of the AtrbohD gene, constitutes a barrier of resistance to bacterial attack, and acts independently of the SA-mediated response. To determine the importance of T2SS-secreted proteins in elicitation of these defenses, we used a T2SS deficient mutant and purified enzymatic preparations of representative members of strain 3937 pectate lyase activity. The T2SS-secreted proteins were responsible only partially for the activation of SA and JA or ET signaling pathways observed after infection with the wild-type bacterium and were not involved in the expression of other identified defense reactions. Our study shows the differential role played by pectate lyases isoenzymes in this process and highlights the complexity of the host immune network, which is finely controlled by the bacterium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-20-7-0794 | DOI Listing |
Nat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFGene
January 2025
Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou 730070, China.
Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Autophagy is thought to be critically involved in the regulation of nutrient metabolism and gene expression. Nevertheless, little is known about its role in regulating starch metabolism and hypoxia responsive genes in plants exposed to microbial volatile pollutants. In the present study, we found that exposure of Arabidopsis to Enterobacter aerogene (E.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Sucrose is an important factor affecting plant growth and fruit quality, but the molecular regulatory mechanism of sucrose biosynthesis in longan is not yet understood. Here, we characterized a transcription factor, DlbHLH68, positively regulates sucrose accumulation in longan. Subcellular localization and transcriptional activity analysis indicated that DlbHLH68 is a nuclear transcriptional activator.
View Article and Find Full Text PDFPlant Sci
January 2025
Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:
Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!