Brassinosteroids (BRs) are phytosteroid hormones controlling various physiological processes critical for normal growth and development. BRs are perceived by a protein complex containing two transmembrane receptor kinases, BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) [1-3]. BRI1 null mutants exhibit a dwarfed stature with epinastic leaves, delayed senescence, reduced male fertility, and altered light responses. BAK1 null mutants, however, only show a subtle phenotype, suggesting that functionally redundant proteins might be present in the Arabidopsis genome. Here we report that BAK1-LIKE 1 (BKK1) functions redundantly with BAK1 in regulating BR signaling. Surprisingly, rather than the expected bri1-like phenotype, bak1 bkk1 double mutants exhibit a seedling-lethality phenotype due to constitutive defense-gene expression, callose deposition, reactive oxygen species (ROS) accumulation, and spontaneous cell death even under sterile growing conditions. Our detailed analyses demonstrate that BAK1 and BKK1 have dual physiological roles: positively regulating a BR-dependent plant growth pathway, and negatively regulating a BR-independent cell-death pathway. Both BR signaling and developmentally controlled cell death are critical to optimal plant growth and development, but the mechanisms regulating early events in these pathways are poorly understood. This study provides novel insights into the initiation and crosstalk of the two signaling cascades.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2007.05.036DOI Listing

Publication Analysis

Top Keywords

bak1 bkk1
12
growth development
8
null mutants
8
mutants exhibit
8
cell death
8
plant growth
8
bak1
6
bkk1 regulate
4
regulate brassinosteroid-dependent
4
growth
4

Similar Publications

Metacaspases (MCs) are structural homologs of mammalian caspases found in plants, fungi, and protozoa. Type-I MCs carry an N-terminal prodomain, the function of which is unclear. Through genetic analysis of Arabidopsis mc2-1, a T-DNA insertion mutant of MC2, we demonstrated that the prodomain of metacaspase 2 (MC2) promotes immune signaling mediated by pattern-recognition receptors (PRRs).

View Article and Find Full Text PDF

BRI1-ASSOCIATED KINASE 1 (BAK1/SERK3) and its closest homolog BAK1-LIKE 1 (BKK1/SERK4) are leucine-rich repeat receptor kinases (LRR-RKs) belonging to the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. They act as co-receptors of various other LRR-RKs and participate in multiple signaling events by complexing and transphosphorylating ligand-binding receptors. Initially identified as the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) co-receptor, BAK1 also functions in plant immunity by interacting with pattern recognition receptors.

View Article and Find Full Text PDF

Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a gene in Arabidopsis that produces secreted peptides known as SCOOP, which are important for plant defense signaling through interaction with a receptor complex.
  • Two specific peptides named SCOOP10#1 and SCOOP10#2 were identified in leaf fluids, confirmed as real peptides for the first time, showcasing a specific structural motif crucial for their function.
  • Mutations in the gene were linked to early flowering and increased expression of certain floral genes, indicating its role in regulating flowering time and showcasing the gene family's functional diversity.
View Article and Find Full Text PDF

Microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) research has traditionally centred around signal transduction pathways originating from activated membrane-localized pattern recognition receptors (PRRs), culminating in nuclear transcription and posttranslational modifications. More recently, chloroplasts have emerged as key immune signalling hubs, playing a central role in integrating environmental signals. Notably, MAMP recognition induces chloroplastic reactive oxygen species (cROS) that is suppressed by pathogen effectors, which also modify the balance of chloroplast-synthesized precursors of the defence hormones, jasmonic acid, salicylic acid (SA) and abscisic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!