Cardiac remodelling is a key risk factor for the development of heart failure in the chronic phase following myocardial infarction. Our previous studies have shown an anti-remodelling role of ACE2 (angiotensin-converting enzyme 2) in vivo during hypertension and that these protective effects are mediated through increased circulating levels of Ang-(1-7) [angiotensin-(1-7)]. In the present study, we have demonstrated that cardiac myocytes have modest ACE2 activity, whereas cardiac fibroblasts do not exhibit any endogenous activity. As fibroblasts are the major cell type found in an infarct zone following a myocardial infarction, we examined the effects of ACE2 gene delivery to cultured cardiac fibroblasts after acute hypoxic exposure. Cardiac fibroblasts from 5-day-old Sprague-Dawley rat hearts were grown to confluence and transduced with a lentiviral vector containing murine ACE2 cDNA under transcriptional control by the EF1alpha (elongation factor 1alpha) promoter (lenti-ACE2). Transduction of fibroblasts with lenti-ACE2 resulted in a viral dose-dependent increase in ACE2 activity. This was associated with a significant attenuation of both basal and hypoxia/re-oxygenation-induced collagen production by the fibroblasts. Cytokine production, specifically TGFbeta (transforming growth factor beta), by these cells was also significantly attenuated by ACE2 expression. Collectively, these results indicate that: (i) endogenous ACE2 activity is observed in cardiac myocytes, but not in cardiac fibroblasts; (ii) ACE2 overexpression in the cardiac fibroblast attenuates collagen production; and (iii) this prevention is probably mediated by decreased expression of cytokines. We conclude that ACE2 expression, limited to cardiac fibroblasts, may represent a novel paradigm for in vivo therapy following acute ischaemia.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20070160DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
24
collagen production
12
ace2 activity
12
ace2
10
cardiac
10
fibroblasts
9
ace2 overexpression
8
myocardial infarction
8
cardiac myocytes
8
ace2 expression
8

Similar Publications

Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied.

View Article and Find Full Text PDF

Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3.

View Article and Find Full Text PDF

Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.

Tissue Eng Regen Med

January 2025

Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!