Nuclear stiffness, expressed as a hardness derivative, appears to be a good measure of the slope of global hardness. The authors analyze molecular states for which hardness has a maximum value. Maximum hardness principle (MHP) has been discussed. At the ground state hardness function does not obtain a maximum value versus spatial coordinates within a constant number of electrons (N), but is so within constant chemical potential (mu) constraint. The authors apply this feature to evaluate an energy third derivative (gamma). MHP has been analyzed via symmetry considerations of nuclear stiffness and nuclear reactivity. Nuclear stiffness has been also applied to study the hardness profile for a chemical reaction. In this case, the authors seek molecular states for which hardness is at a minimum. They have examined systems for which they have recently obtained regional chemical potentials [P. Ordon and A. Tachibana, J. Mol. Model. 11, 312 (2005); J. Chem. Sci. 117, 583 (2005)]. The transition state is found not to be the softest along the chemical reaction path. Nuclear stiffness reflects well the softest conformation of a molecule, which has been found independently along the intrinsic reaction coordinate profile. Electronic energy-density [A. Tachibana, J. Mol. Mod. 11, 301 (2005)] has been used to visualize the reactivity difference between the softest state and the transition state.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2741535DOI Listing

Publication Analysis

Top Keywords

nuclear stiffness
20
chemical reaction
12
hardness
8
maximum hardness
8
hardness principle
8
reaction path
8
energy third
8
third derivative
8
derivative gamma
8
molecular states
8

Similar Publications

The nucleus must maintain stiffness to preserve its shape and integrity to ensure proper function. Defects in nuclear stiffness caused from chromatin and lamin perturbations produce abnormal nuclear shapes common in aging, heart disease, and cancer. Loss of nuclear shape via protrusions called blebs lead to nuclear rupture that is well-established to cause nuclear dysfunction, including DNA damage.

View Article and Find Full Text PDF

C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics.

View Article and Find Full Text PDF

Substrate stiffness regulates the proliferation and inflammation of chondrocytes and macrophages through exosomes.

Acta Biomater

December 2024

Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China. Electronic address:

Osteoarthritis (OA) progression is characterized by decreased cartilage stiffness and degradation of the extracellular matrix (ECM), which significantly influence cartilage behavior and fate. In contrast, processes such as chondrocyte calcification and aging often result in increased stiffness. Despite extensive studies on how ECM stiffness regulates cellular functions, the impact of substrate stiffness on the cartilage microenvironment and intercellular communications remains not well understood.

View Article and Find Full Text PDF

Unlabelled: A hatching-distance-controlled lattice of 65.1Co28.2Cr5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!