A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. | LitMetric

Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis.

Microbiology (Reading)

Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA.

Published: July 2007

Yersinia pestis genomes contain genes homologous to the aerobactin receptor (iutA) and biosynthetic genes (iucABCD) as well as the ferric hydroxamate uptake system (fhuCDB) of Escherichia coli. However, iucA is disrupted by a frameshift mutation. An E. coli strain carrying the cloned Y. pestis aerobactin region was unable to produce aerobactin, but could use the siderophore as an iron source. Repair of the frameshift mutation in iucA did not allow aerobactin production in E. coli or Y. pestis. In contrast, a Y. pestis strain with a plasmid encoding the iucABCD-iutA genes from Shigella flexneri or pColV-K30 did produce and secrete the siderophore. In addition, Yersinia pseudotuberculosis PB1, which encodes the iucABCD-iutA locus without the Y. pestis-specific frameshift mutation, also failed to produce aerobactin. The Y. pestis fhuCDB operon, encoding an ABC transporter for a range of hydroxamate siderophores, was able to complement a strain of E. coli with a transposon insertion in fhuC, allowing utilization of aerobactin and ferrichrome. Y. pestis KIM6, a strain deficient in the production of the siderophore yersiniabactin, was able to use both the ferrichrome and the aerobactin siderophores as a source of iron. Mutations in iutA or the fhu operon abolished the ability of KIM6 to use aerobactin. Mutations in the fhu operon, but not in iutA, affected the ability of KIM6 to use ferrichrome. This demonstrates that Y. pestis uses both ferrichrome and aerobactin, but has lost the ability to synthesize aerobactin.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.2006/004275-0DOI Listing

Publication Analysis

Top Keywords

frameshift mutation
12
aerobactin
10
ferric hydroxamate
8
hydroxamate uptake
8
pestis
8
yersinia pestis
8
produce aerobactin
8
ferrichrome aerobactin
8
fhu operon
8
ability kim6
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!