Recruitment of rare 3-grams at functional sites: is this a mechanism for increasing enzyme specificity?

BMC Bioinformatics

Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.

Published: June 2007

Background: A wealth of unannotated and functionally unknown protein sequences has accumulated in recent years with rapid progresses in sequence genomics, giving rise to ever increasing demands for developing methods to efficiently assess functional sites. Sequence and structure conservations have traditionally been the major criteria adopted in various algorithms to identify functional sites. Here, we focus on the distributions of the 203 different types of 3-grams (or triplets of sequentially contiguous amino acid) in the entire space of sequences accumulated to date in the UniProt database, and focus in particular on the rare 3-grams distinguished by their high entropy-based information content.

Results: Comparison of the UniProt distributions with those observed near/at the active sites on a non-redundant dataset of 59 enzyme/ligand complexes shows that the active sites preferentially recruit 3-grams distinguished by their low frequency in the UniProt. Three cases, Src kinase, hemoglobin, and tyrosyl-tRNA synthetase, are discussed in details to illustrate the biological significance of the results.

Conclusion: The results suggest that recruitment of rare 3-grams may be an efficient mechanism for increasing specificity at functional sites. Rareness/scarcity emerges as a feature that may assist in identifying key sites for proteins function, providing information complementary to that derived from sequence alignments. In addition it provides us (for the first time) with a means of identifying potentially functional sites from sequence information alone, when sequence conservation properties are not available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950313PMC
http://dx.doi.org/10.1186/1471-2105-8-226DOI Listing

Publication Analysis

Top Keywords

functional sites
20
rare 3-grams
12
recruitment rare
8
sites
8
mechanism increasing
8
sequences accumulated
8
sites sequence
8
3-grams distinguished
8
active sites
8
3-grams
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!