Transcranial magnetic stimulation (TMS) has become a common tool for the brain mapping of a wide variety of cognitive functions. Because TMS over cortical regions of interest other than motor cortex often does not produce easily observable effects, the ability to calibrate TMS intensity for stimulation over nonmotor regions can be problematic. Previous studies reported no correlation between motor thresholds (MT) over the motor cortex and phosphene thresholds (PT) over the visual cortex. However, different thresholding methods, lighting, and eye-closure conditions were used to determine MT and PT. We investigated the correlation between resting MT (rMT), active MT (aMT), and PT in 27 dark-adapted healthy volunteers. All thresholds were measured with eyes-open in the dark and determined by gradually reducing stimulation intensity downward. All subjects had aMT and rMT; 21 subjects had measurable PT. rMT was 70.4% +/- 9.8% (mean +/- SD of maximum stimulator output); aMT was 61.1% +/- 7.9%; PT was 82.2% +/- 10.1%. A significant positive correlation was found between aMT and PT (r = 0.53; P = 0.014) with a trend toward correlation between rMT and PT (r = 0.43; P = 0.052). Our results suggest that sensitivity to TMS over visual and motor cortices may be correlated under similar thresholding procedures. They also provide a rationale for the use of easily obtained aMT to calibrate TMS intensities in brain mapping studies that employ TMS in cortical regions besides motor cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870884 | PMC |
http://dx.doi.org/10.1002/hbm.20427 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China.
Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea.
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!