To accommodate expanding volume (V) during hyposmotic swelling, animal cells change their shape and increase surface area (SA) by drawing extra membrane from surface and intracellular reserves. The relative contributions of these processes, sources and extent of membrane reserves are not well defined. In this study, the SA and V of single substrate-attached A549, 16HBE14o(-), CHO and NIH 3T3 cells were evaluated by reconstructing cell three-dimensional topology based on conventional light microscopic images acquired simultaneously from two perpendicular directions. The size of SA reserves was determined by swelling cells in extreme 98% hypotonic (approximately 6 mOsm) solution until membrane rupture; all cell types examined demonstrated surprisingly large membrane reserves and could increase their SA 3.6 +/- 0.2-fold and V 10.7 +/- 1.5-fold. Blocking exocytosis (by N-ethylmaleimide or 10 degrees C) reduced SA and V increases of A549 cells to 1.7 +/- 0.3-fold and 4.4 +/- 0.9-fold, respectively. Interestingly, blocking exocytosis did not affect SA and V changes during moderate swelling in 50% hypotonicity. Thus, mammalian cells accommodate moderate (<2-fold) V increases mainly by shape changes and by drawing membrane from preexisting surface reserves, while significant endomembrane insertion is observed only during extreme swelling. Large membrane reserves may provide a simple mechanism to maintain membrane tension below the lytic level during various cellular processes or acute mechanical perturbations and may explain the difficulty in activating mechanogated channels in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00232-006-0080-8 | DOI Listing |
J Bioenerg Biomembr
January 2025
Institute of Molecular Physiology and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia.
Lithium is used in the long-term treatment of bipolar disorder, exhibiting a beneficial effect on the neuronal cells. The concentration of lithium in the blood serum can vary and can easily approach a level that is related to cardiotoxic adverse effects. This is due to its narrow therapeutic index.
View Article and Find Full Text PDFJ AAPOS
January 2025
Cleveland Clinic Cole Eye Institute, Cleveland, Ohio. Electronic address:
Background: Choroidal neovascular membranes (CNVM) associated with optic nerve head drusen (ONHD) are rare but vision threatening. A variety of treatments, including laser photocoagulation, subretinal surgery, and anti-VEGF injections, are effective but pose risks, particularly in pediatric patients, underscoring the need for a comprehensive review.
Methods: A systematic review was conducted using PubMed, Embase, and Web of Science.
Front Oncol
January 2025
Department of Clinical Development, POINT Biopharma, a wholly owned subsidiary of Eli Lilly and Company, Indianapolis, IN, United States.
Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!