Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The formation of homodimer complexes for interface stability, catalysis and regulation is intriguing. The mechanisms of homodimer complexations are even more interesting. Some homodimers form without intermediates (two-state (2S)) and others through the formation of stable intermediates (three-state (3S)). Here, we analyze 41 homodimer (25 2S and 16 3S) structures determined by X-ray crystallography to estimate structural differences between them. The analysis suggests that a combination of structural properties such as monomer length, subunit interface area, ratio of interface to interior hydrophobicity can predominately distinguish 2S and 3S homodimers. These findings are useful in the prediction of homodimer folding and binding mechanisms using structural data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891634 | PMC |
http://dx.doi.org/10.6026/97320630001042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!