To examine whether long-term consumption of fermented milk containing a specific Lactobacillus casei may improve the health status of preschool children suffering from allergic asthma and/or rhinitis a randomized, prospective, double blind, controlled trial was conducted in 187 children 2-5 y of age. The children received for 12 mo either fermented milk (100 mL) containing Lactobacillus casei (10(8) cfu/mL) or placebo. The time free from and the number of episodes of asthma/rhinitis after starting intervention were the outcome measures. The number of fever or diarrhea episodes and the change in serum immunoglobulin were further assessed. No statistical difference between intervention and control group occurred in asthmatic children. In children with rhinitis, the annual number of rhinitis episodes was lower in the intervention group, mean difference (95% CI), -1.6 (-3.15 to -0.05); the mean duration of an episode of diarrhea was lower in the intervention group, mean difference -0.81 (-1.52 to -0.10) days. While long-term consumption of fermented milk containing Lactobacillus casei may improve the health status of children with allergic rhinitis no effect was found in asthmatic children.

Download full-text PDF

Source
http://dx.doi.org/10.1203/PDR.0b013e3180a76d94DOI Listing

Publication Analysis

Top Keywords

fermented milk
16
lactobacillus casei
16
long-term consumption
12
consumption fermented
12
randomized prospective
8
prospective double
8
double blind
8
blind controlled
8
controlled trial
8
milk lactobacillus
8

Similar Publications

Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

Microb Cell Fact

January 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

View Article and Find Full Text PDF

In the PRIMA project ArtiSaneFood, the microbiological parameters of several artisanal cheeses produced in the Mediterranean area have been quantified. In this pilot study, we selected four of these artisanal cheese products from Italy, Portugal, Spain, and Morocco to investigate and compare their microbiomes in terms of taxonomic composition, presence of reads of foodborne pathogens, as well as virulence and antimicrobial resistance genes. , and were the most represented genera in the Portuguese and Spanish cheeses, in the Italian cheese, and , , , and in the Moroccan products.

View Article and Find Full Text PDF

Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage.

View Article and Find Full Text PDF

Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.

View Article and Find Full Text PDF

Two marine-derived bacteria, Bacillus paralicheniformis (HR-1) and Bacillus haynesii (HR-5), were isolated from sediments and identified using 16S ribosomal RNA gene amplification and sequencing as well as biochemical analysis. The development of a bacterial consortium (HR-1 & HR-5) from these two bacteria was used to increase the production of the protease enzyme under various conditions, including fermentation media, carbon and nitrogen sources (1% w/v), different pH levels, incubation time, and the obtained enzyme, were detected using SDS-PAGE followed by purification. Bacterial consortium HR-1 & HR-5 exhibited maximum protease production (330.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!