High glucose inhibits endothelial cell proliferation. Thus, we studied cyclin-dependent kinase inhibitor p15(INK4b) in high glucose-induced effects in human umbilical endothelial cells at 24h. High glucose decreased cell proliferation while arresting cells in G(0)/G(1) phase of the cell cycle. High glucose increased phospho-extracellular signal regulated kinase (ERK)1/2, p15(INK4b) protein and mRNA expression. High glucose-inhibited cell proliferation was attenuated by antisense p15(INK4b) oligonucleotide. Moreover, PD98059 attenuated high glucose-induced p15(INK4b) protein expression. High glucose increased transforming growth factor-beta (TGF-beta) gene transcriptional activity and mRNA expression. However, neither SB431542 (type I TGF-beta receptor blocker) nor TGF-beta1 antibody affected high glucose-induced p15(INK4b) protein expression. Additionally, N-acetylcysteine (an antioxidant) attenuated high glucose-induced growth arrest and p15(INK4b) protein expression. Thus, high glucose-induced growth arrest is dependent on p15(INK4b) and oxidative stress in endothelial cells. Moreover, high glucose-induced p15(INK4b) protein expression is dependent on ERK1/2 and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2007.05.010DOI Listing

Publication Analysis

Top Keywords

high glucose-induced
24
high glucose
20
p15ink4b protein
20
cell proliferation
16
protein expression
16
high
12
expression high
12
glucose-induced p15ink4b
12
endothelial cell
8
signal regulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!