Four UV filters, benzophenone-3 (BP-3), 4-methylbenzylidence camphor (4-MBC), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC), have been examined along the different units of a wastewater reclamation plant (WWRP) located in Tianjin, North China. The analytical procedure included solid-phase extraction and gas chromatographic/mass spectrometric analyses. All four UV filters were detected in the influent during the three sampling campaigns (February, July, and September), and the concentrations ranged from 34 to 2128 ng L(-1). The concentrations of the four UV filters were higher in hot weather (July and September) than in cool weather (February). The monthly average removal ranged from 7.6% to 21% for the selected UV filters during coagulation-flocculation (C-F) treatment. The ozonation treatment achieved the maximum removal (16-28%); on the contrary, the continuous microfiltration (CMF) achieved the lowest removal (3.6-8.2%). The total removal efficiencies along the plant varied from 28% to 43%. These results indicate that the UV filters are not completely removed during WWRP treatment and may be carried over into the environment during the reuse applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2007.05.039DOI Listing

Publication Analysis

Top Keywords

wastewater reclamation
8
reclamation plant
8
july september
8
filters
6
occurrence behavior
4
behavior sunscreen
4
sunscreen filters
4
filters wastewater
4
plant filters
4
filters benzophenone-3
4

Similar Publications

From waste to wealth: Exploring the effect of particle size on biopolymer harvesting from aerobic granular sludge.

Bioresour Technol

December 2024

Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China. Electronic address:

This study aimed to examine the impact of aerobic granular sludge (AGS) sizes on its properties and alginate-like exopolymers (ALE) recovery potential. The AGS was cultivated in a lab-scale bioreactor and categorized into six size classes with 200 μm intervals. There appeared a critical size (400-800 μm) for developing stable AGS structure and excellent ALE recovery.

View Article and Find Full Text PDF

Hybrid modelling framework for ozonation and biological activated carbon in tertiary wastewater treatment.

Water Sci Technol

December 2024

Department of Civil Engineering, New Engineering Building, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Future Water Institute, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa.

Despite water being a significant output of water and resource recovery facilities (WRRFs), tertiary wastewater treatment processes are often underrepresented in integrated WRRF models. This study critically reviews the approaches used in comprehensive models for ozone (O) and biological activated carbon (BAC) operation units for wastewater tertiary treatment systems. The current models are characterised by limitations in the mechanisms that describe O disinfection and disinfection by-product formation, and BAC adsorption in multi-component solutes.

View Article and Find Full Text PDF

Rotating algae biofilm reactors (RABRs) can reduce energy requirements for wastewater reclamation but require further optimization for implementation at water resource recovery facilities (WRRF). Optimizing RABR operation is challenging because conditions at WRRF change frequently, and disregarding interaction terms related to these changes can produce incorrect conclusions about RABR behavior. This study evaluated the two-way interaction and main effects of four factors on the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm grown in municipal anaerobic digester centrate, with factor levels and operating conditions selected to mimic a pilot RABR at a WRRF in Utah.

View Article and Find Full Text PDF

Performance of in nutrient removal and tolerance in Halloufa Wetland, Algeria.

Int J Phytoremediation

December 2024

Department of Process Engineering, Faculty of Technology, University of El Oued, El Oued, Algeria.

Phytoremediation is an effective and sustainable method for removing pollutants from wastewater. This study investigates the phytoremediation capabilities of , a halophytic Saharan plant species, for excess phosphorus and nitrogen in domestic wastewater. The plants were sourced from the "" wetland, a wastewater discharge area in the north of El-Oued, south-eastern Algeria.

View Article and Find Full Text PDF

Air gap membrane distillation for nutrient and water recovery from marine culture wastewater for improved water reclamation.

Environ Res

December 2024

Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Zhongli, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan. Electronic address:

Valuable nutrients such as ammonium and phosphate exist in teensy concentrations in marine-culture wastewater (MCW), causing their recovery challenging with inefficient conventional methods. Air gap membrane distillation (AGMD) is systematically explored for the first time to recover nutrients and pure water from low-nutrient MCW. This study assessed the AGMD performance in resource recovery by conducting a thorough investigation and optimization of various parameter conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!