Aryl-hydrocarbon receptor activation regulates constitutive androstane receptor levels in murine and human liver.

Hepatology

Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.

Published: July 2007

Unlabelled: The aryl-hydrocarbon receptor (AhR) is a basic helix-loop-helix/Per-Arnt-Sim transcription factor that can be activated by exogenous as well as endogenous ligands. AhR is traditionally associated with xenobiotic metabolism. In an attempt to identify novel target genes, C57BL/6J mice were treated with beta-naphthoflavone (BNF), a known AhR ligand, and genome-wide expression analysis studies were performed using high-density microarrays. Constitutive androstane receptor (CAR) was found to be one of the differentially regulated genes. Real-time quantitative polymerase chain reaction (qPCR) verified the increase in CAR messenger RNA (mRNA) level. BNF treatment did not increase CAR mRNA in AhR-null mice. Time-course studies in mice revealed that the regulation of CAR mRNA mimicked that of Cyp1A1, a known AhR target gene. To demonstrate that the increase in CAR mRNA translates to an increase in functional CAR protein, mice were sequentially treated with BNF (6 hours) followed by the selective CAR agonist, TCPOBOP (3 hours). qPCR revealed an increase in the mRNA level of Cyp2b10, previously known to be regulated by CAR. This also suggests that CAR protein is present in limiting amounts with respect to its transactivation ability. Finally, CAR was also up-regulated in primary human hepatocytes in response to AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene.

Conclusion: This study identifies a mode of up-regulating CAR and potentially expands the role of AhR in drug metabolism. This study also demonstrates in vivo up-regulation of CAR through chemical exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098831PMC
http://dx.doi.org/10.1002/hep.21671DOI Listing

Publication Analysis

Top Keywords

car
12
increase car
12
car mrna
12
aryl-hydrocarbon receptor
8
constitutive androstane
8
androstane receptor
8
mrna level
8
car protein
8
ahr
6
increase
5

Similar Publications

Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have poor outcomes. Gemcitabine + oxaliplatin (GemOx) with rituximab, a standard salvage therapy, yields complete response (CR) rates of approximately 30% and median overall survival (OS) of 10-13 months. Patients with refractory disease fare worse, with a CR rate of 7% for subsequent therapies and median OS of 6 months.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Cancer immunotherapy in progress-an overview of the past 130 years.

Int Immunol

January 2025

Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.

Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!