Diabetic nephropathy (DN) is associated with increased oxidative stress, overexpression and activation of growth factor receptors, including those for transforming growth factor-beta1 (TGF-beta-RII), platelet-derived growth factor (PDGF-R), and insulin-like growth factor (IGF1-R). These pathways are believed to represent pathophysiological determinants of DN. Beyond perfect glycemic control, angiotensin-converting enzyme inhibitors (ACEI) are the most efficient treatment to delay glomerulosclerosis. Since their mechanisms of action remain uncertain, we investigated the effect of ACEI on the glomerular expression of these growth factor pathways in a model of streptozotocin-induced diabetes in rats. The early phase of diabetes was found to be associated with an increase in glomerular expression of IGF1-R, PDGF-R, and TGF-beta-RII and activation of IRS1, Erk 1/2, and Smad 2/3. These changes were significantly reduced by ACEI treatment. Furthermore, ACEI stimulated glutathione peroxidase activity, suggesting a protective role against oxidative stress. ACEI decreased ANG II production but also increased bradykinin bioavailability by reducing its degradation. Thus the involvement of the bradykinin pathway was investigated using coadministration of HOE-140, a highly specific nonpeptidic B2-kinin receptor antagonist. Almost all the previously described effects of ACEI were abolished by HOE-140, as was the increase in glutathione peroxidase activity. Moreover, the well-established ability of ACEI to reduce albuminuria was also prevented by HOE-140. Taken together, these data demonstrate that, in the early phase of diabetes, ACEI reverse glomerular overexpression and activation of some critical growth factor pathways and increase protection against oxidative stress and that these effects involve B2-kinin receptor activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00401.2006 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFCytotherapy
January 2025
Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India.
Background Aims: The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong. Electronic address:
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!