The current study determined the ability of a p75(NTR) antagonistic cyclic peptide to rescue cells from beta amyloid (Abeta) (1-40)-induced death. p75(NTR)-, p140(trkA)-NIH-3T3 cells or E17 foetal rat cortical neurones were incubated with 125I-NGF or 125I-Abeta (1-40) and increasing concentrations of the cyclic peptide (CATDIKGAEC). Peptide ability to displace 125I-NGF or 125I-Abeta (1-40) binding was determined. Duplicate cultures were preincubated with CATDIKGAEC (250 nM) or diluent and then stimulated with Abeta (1-40). Peptide ability to displace Abeta (1-40) binding, interfere with Abeta (1-40)-induced signalling and rescue cells from Abeta-mediated toxicity was determined by immunoprecipitation and autoradiography, Northern blotting, JNK activation, MTT and trypan blue assays. The peptide inhibited NGF and Abeta (1-40) binding to p75(NTR), but not to p140(trkA). Abeta (1-40) induced c-jun transcription (57.3% +/- 0.07%) in diluent-treated p75(NTR)-cells, but not in cells preincubated with the cyclic peptide. Also, at 250 nM, the peptide reduced Abeta (1-40)-induced phosphorylation of JNK by 71.8% +/- 0.03% and protected neurones against Abeta-induced toxicity as determined by: trypan blue exclusion assay (53% +/- 11% trypan blue-positive cells in diluent pretreated cultures vs. 28% +/- 5% in cyclic peptide-pretreated cultures); MTT assay (0.09 +/-0.03 units in diluent-pretreated cells vs. 0.12 +/- 0.004 units in cyclic peptide-pretreated cells); and visualization of representative microscopic fields. Our data suggest that a cyclic peptide homologous to amino acids 28-36 of NGF known to mediate binding to p75(NTR) can interfere with Abeta (1-40) signalling and rescue neurones from Abeta (1-40)-induced toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2990.2007.00844.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!