This study focused on mimicking collagen structurally and biologically using various peptide sequences toward realizing an artificial collagen-like biomaterial. Collagen-mimetic peptides (CMPs) incorporating integrin-specific glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) sequence from residues 502 to 507 of collagen alpha(1)(I) were used as a bioadhesive matrix and grafted onto poly(3-hydroxybutyrate-co3-hydroxyvalerate) microspheres to optimize cell adhesion, proliferation, and functions. Cell recognition of these biomolecules appeared to be conformation dependent, with the CMP1 of higher triple helix stability being preferred. Absence of the GFOGER hexapeptide in the CMP1' and CMP2' caused an adverse effect on the level of cell adhesion (<10%). The GFOGER-containing triple-helical CMPs effectively inhibited cell adhesion to collagen in a competition assay. The cell-adhesion activity of the CMP1 was approximately 50% of that of collagen. The cell spreading on the CMP1 was comparable with that observed on collagen. The presence of the CMP1 promoted cell attachment and spreading on the microspheres and extensive cell proliferation and bridging. Slower cell proliferation was observed on the blank microspheres. Live-dead assay showed that most cells are viable after 10-day culture. The presence of CMP1 on the microspheres maintained the albumin secretion and P-450 activity levels of the liver cells for up to 14 days. Our results established the potential of CMP1 to create a collagen-like microenvironment for optimizing cellular responses for liver tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2007.0063DOI Listing

Publication Analysis

Top Keywords

cell adhesion
12
adhesion proliferation
8
integrin-specific collagen-mimetic
4
collagen-mimetic peptide
4
peptide approach
4
approach optimizing
4
optimizing hep3b
4
hep3b liver
4
cell
4
liver cell
4

Similar Publications

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

Unveiling the potential of pullulan in enhancing ketoprofen release from PHBV filaments.

Int J Biol Macromol

January 2025

Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil. Electronic address:

In this study, sustainable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and pullulan (PUL)/PHBV filaments were prepared with ketoprofen for scaffold preparation. The research aimed evaluate the influence of pullulan in the filament properties, such as thermal, morphological, and biological behavior. Hansen parameters demonstrated the difference in the miscibility of the polymers and drug in the blend.

View Article and Find Full Text PDF

Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury.

J Hepatol

January 2025

Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:

Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.

View Article and Find Full Text PDF

RAP1 is essential for PRRSV replication and the synthesis of the viral genome.

Vet Microbiol

December 2024

Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.

View Article and Find Full Text PDF

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!