The purpose of this study was to explore the experience of adult genetic testing. Grounded theory was used to plan, guide, and analyze in-depth interviews with 29 participants. The theory of genetic vulnerability was developed and is composed of five concepts: (a) experiencing the family disease, (b) testing for a mutation, (c) fore-grounding inherited disease risk, (d) responding to knowledge of genetic vulnerability, and (e) altering or avoiding the family experience of inherited disease. Roy's model of adaptation is discussed as a valuable lens through which to test and adapt this theory.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0894318407303127DOI Listing

Publication Analysis

Top Keywords

genetic vulnerability
12
theory genetic
8
inherited disease
8
theory
4
vulnerability roy
4
roy model
4
model exemplar
4
exemplar purpose
4
purpose study
4
study explore
4

Similar Publications

Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.

Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

Genetic diversity and virulence gene profiling of Vibrio harveyi in a vibriosis-affected European seabass (Dicentrarchus labrax) aquaculture tank.

Mar Pollut Bull

January 2025

Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France. Electronic address:

Aquaculture is crucial for meeting global seafood demand; however, intensification often leads to the development of bacterial diseases that threaten productivity. Dicentrarchus labrax, a key species in European aquaculture, is highly vulnerable to vibriosis, primarily caused by Vibrio harveyi. This study investigates genetic diversity of V.

View Article and Find Full Text PDF

Habitat fragmentation increases the risk of local extinction of small reptiles: A case study on Phrynocephalus przewalskii.

Ecotoxicol Environ Saf

January 2025

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Habitat fragmentation represents a multifaceted global conservation threat, exerting both direct and indirect effects on individual animals and communities. Reptiles, particularly smaller species with limited migratory abilities, are especially vulnerable to these changes. This study examines how small reptiles adapt their life history strategies in fragmented habitats and determines whether their responses are primarily due to phenotypic plasticity or genetic adaptation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!