Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is growing interest in resistance training, but many aspects related to this type of exercise are still not fully understood. Performance varies substantially depending on how resistance training variables are manipulated. Fatigue is a complex phenomenon usually attributed to central (neuronal) and/or peripheral (muscular) origin. Cerebral oxygenation may be associated with the decision to stop exercise, and muscle oxygenation may be related to resistance training responses. Near infrared spectroscopy (NIRS) is a non-invasive optical technique used to monitor cerebral and muscle oxygenation levels. The purpose of this review is to briefly describe the NIRS technique, validation and reliability, and its application in resistance exercise. NIRS-measured oxygenation in cerebral tissue has been validated against magnetic resonance imaging during motor tasks. In muscle tissue, NIRS-measured oxygenation was shown to be highly related to venous oxygen saturation and muscle oxidative rate was closely related to phosphocreatine resynthesis, measured by (31)P-magnetic resonance spectroscopy after exercise. The test-retest reliability of cerebral and muscle NIRS measurements have been established under a variety of experimental conditions, including static and dynamic exercise. Although NIRS has been used extensively to evaluate muscle oxygenation levels during aerobic exercise, only four studies have used this technique to examine these changes during typical resistance training exercises. Muscle oxygenation was influenced by different resistance exercise protocols depending on the load or duration of exercise, the number of sets and the muscle being monitored. NIRS is a promising, non-invasive technique that can be used to evaluate cerebral and muscle oxygenation levels simultaneously during exercise, thereby improving our understanding of the mechanisms influencing performance and fatigue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00007256-200737070-00005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!