A synthetic route to bis-indolyldihydroxybenzoquinones was adapted for parallel organic synthesis. The route involves selective conjugate addition of an indole to dichlorobenzoquinone promoted by Brønsted acid, followed by a Lewis acid-promoted conjugate addition of a second indole and a final hydrolysis. Methods for high-throughput purification of the products of this synthesis were also developed. Using these methods, we prepared a library whose structures are based on asterriquinone natural products, which have a wide range of biological activities. In this report, the activities of the library members in activation of the insulin receptor on mammalian cells were examined. Novel compounds were discovered that fall outside earlier developed structure-activity relationships for insulin mimics, supporting the value of systematic investigation (inspired by Nature) for the discovery of novel biologically active molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cc070062mDOI Listing

Publication Analysis

Top Keywords

conjugate addition
8
parallel synthesis
4
synthesis indolylquinones
4
indolylquinones cell-based
4
cell-based insulin
4
insulin mimicry
4
mimicry synthetic
4
synthetic route
4
route bis-indolyldihydroxybenzoquinones
4
bis-indolyldihydroxybenzoquinones adapted
4

Similar Publications

Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.

View Article and Find Full Text PDF

Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications.

Research (Wash D C)

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.

Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications.

View Article and Find Full Text PDF

Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion.

J Am Chem Soc

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Poly(vinyl chloride) (PVC) and polystyrene (PS) are among the least recycled plastics. In this work, we developed a simple and novel strategy to valorize PVC and PS plastics via photothermal conversion to (1-chloroethyl)benzene, a commodity chemical with excellent versatility. As PVC is known to release HCl gas and decompose into conjugated polyenes, we envisioned a dual role for PVC plastics.

View Article and Find Full Text PDF

The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!