Besides clinical efficacy, the mechanisms of action of deep brain stimulation (DBS) are still debated. To shed light on this complex issue, we have taken the opportunity to record the response of globus pallidus internus (GPi) neurones to 100 Hz stimulations in a case of Lesch-Nyhan syndrome (LNS) where four pallidal electrodes were implanted. Three types of response were observed, 2/19 neurones were unaffected by DBS. About 7/19 neurones were inhibited during DBS stimulation and 10/19 neurones were excited during DBS stimulation. Both effects ceased when DBS was turned off. Inhibited neurones were situated lower that exited ones on the trajectory (1.25 and 4.65 mm above the center of GPi respectively). These observations suggest that locally DBS induces a reversible inhibition of neurone firing rate while at the same time distantly exciting the main afferents to and/or efferents from the GPi. Both actions would result in a strong GPi inhibition that does not preclude increased outflow from the GPi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.21506 | DOI Listing |
Neurobiol Dis
December 2024
Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany. Electronic address:
Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Neurosurgery, University of Iowa, Iowa City, IA, United States. Electronic address:
Introduction: Efficacy of deep brain stimulation (DBS) is established for several movement and psychiatric disorders. However, the mechanism of action and local tissue changes are incompletely described. We describe neurohistopathological findings of 9 patients who underwent DBS for parkinsonism and performed a systematic literature review on postmortem pathologic reports post-DBS.
View Article and Find Full Text PDFFront Pediatr
December 2024
Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
A pyruvate dehydrogenase complex deficiency causes a reduction in adenosine triphosphate production and energy insufficiency, leading to neurological disorders. An abnormal E1-alpha protein originating from the gene with pathogenic variants is unable to communicate with E1-beta for the formation of the E1 enzyme, decreasing pyruvate dehydrogenase complex activity. In this study, we report a Vietnamese boy with lethargy, severe metabolic acidosis, increased serum lactate, hyperalaninemia, lactic acidosis, and globus pallidus lesions.
View Article and Find Full Text PDFGait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands. Electronic address:
Objective: Clinical rating scales often fail to capture the full spectrum of dystonic symptoms. Deep brain stimulation of the globus pallidus interna (GPi-DBS) effectively treats dystonia, but response variability necessitates a reliable biomarker. Intermuscular coherence (4-12 Hz) has been linked to abnormal activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop and may serve as an objective measure of dystonia and GPi-DBS effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!