Pasty injectable biodegradable polymers derived from natural acids.

J Biomed Mater Res A

Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel.

Published: December 2007

Pasty biodegradable polymers that can be mixed with drugs at room temperature and injected to tissue as neat composition are advantageous as they allow simple preparation and delivery of drugs, particularly for heat sensitive drugs. A series of biodegradable pasty poly (ester-anhydride)s were prepared from alkanedicarboxylic acids and ricinoleic acid and its oligomers by transesterification-repolymerization method. The polymers were characterized by common spectroscopic, chromatography, and thermal methods. Polymers containing 70% ricinoleic acid and 30% linear dicarboxylic acids with 4-10 methylene groups were synthesized. The melting point of these poly (ester-anhydride)s increased as the number of methylenes in the alkanedicarboxylic acid increased. Use of short oligomers of ricinoleic acid instead of ricinoleic acid itself increased the melting point and decreased the softness of the resulting polymers. The polymers released model drugs for a few weeks while being degraded to their fatty acid counterparts. Copolymerization of alkanedicarboxylic acids with ricinoleic acid resulted in pasty biodegradable polymers useful as injectable carriers for drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.31395DOI Listing

Publication Analysis

Top Keywords

ricinoleic acid
20
biodegradable polymers
12
pasty biodegradable
8
poly ester-anhydrides
8
alkanedicarboxylic acids
8
acids ricinoleic
8
melting point
8
acid increased
8
polymers
7
acid
7

Similar Publications

A 7,000-year-old multi-component arrow poison from Kruger Cave, South Africa.

iScience

December 2024

Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.

We present the results of a GC-MS and UHPLC-MS analysis of residue recovered from the marrow cavity of a 7,000-year-old bovid femur from Kruger Cave, South Africa. The femur was filled with an unknown substance into which were embedded three bone arrowheads, indicating that the femur served as a quiver. Our results reveal the presence of digitoxin and strophanthidin, both cardiac glycosides associated with hunting poisons.

View Article and Find Full Text PDF

This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS.

View Article and Find Full Text PDF

The enhanced thermal and chemical stability of Zinc oxide-based materials make them excellent candidates for the removal of odor-producing pollutants and compounds. The zinc salt of ricinoleic acid, commonly known as zinc ricinoleate, is viewed as the top performer. This article describes an innovative two-step synthesis of zinc ricinoleate, where the first step consists of the preparation of an intermediate compound, methyl ricinoleate, which is synthesized via transesterification of castor oil with methanol and catalyzed by sodium hydroxide.

View Article and Find Full Text PDF

Ortega is a perennial tropical shrub traditionally used as conventional medicine for the treatment of various ailments. The present study aims to validate the use of Ortega leaf (SVLE) and fruit extracts (SVFE) in traditional medicine through untargeted metabolomics and assessment of its biological and phytochemical properties. GC-MS-based untargeted metabolomics identified derivatives of 59 and 50 metabolites in SVLE and SVFE, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!