Starting from a silicon dichloro substituted silole and a silacyclobutene, a series of new organosilicon-based spiro compounds was synthesized by using standard organometallic reaction procedures. The spiro compounds that combine two organic photoactive subunits at one silicon center were fully characterized by the usual analytical and spectroscopic methods, which include molecular structure determination by single-crystal X-ray analysis. Photoluminescence spectra of the compounds were recorded in the solid state and also as dilute solutions in THF. Interpretation of the spectra revealed that photoluminescence in this series of compounds originated from the stilbene or its vinylogue subunits. Different linkages of these groups to the silicon atoms (cyclic or open structures, four- or five-membered cycles) strongly affected both the excitation and the emission spectra, which show different emission maxima depending on the state of the sample (solid state or in solution) and the wavelength of light used for excitation. Thus, owing to their optoelectronic properties these compounds might be useful tools for the design of sensitive sensor materials and of optical switches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200700178DOI Listing

Publication Analysis

Top Keywords

optical switches
8
spiro compounds
8
solid state
8
compounds
6
molecular optical
4
switches synthesis
4
synthesis structure
4
structure photoluminescence
4
photoluminescence spirosila
4
spirosila compounds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!