Arbuscular mycorrhizal fungi (AMF) play a vital role in ecosystem functioning. In most grasslands, herbivory by both vertebrate and invertebrate herbivores is common and thus in order to assess herbivore effects on multitrophic-level interactions both should be considered. This study investigated the effects of grazing by rabbit and insect herbivores on root-colonization of grasses by AMF in two lowland grasslands in southern England, UK. A long-term exclosure site was used to provide a temporal assessment in order to elucidate whether any short-term responses to herbivore removal were sustained. Root samples from three grass species at each site were analysed in terms of total mycorrhizal colonization and proportional colonization by individual mycorrhizal structures. Colonization levels were up to 1.6 times greater under moderate levels of rabbit grazing (with summer maxima of 25% and winter minima of 11%) than in intensely grazed swards or fenced plots at both sites. The change was fast (within 8 weeks), consistent throughout the sampled field plots, and temporally sustainable over a 19-year period. There was no significant effect of insect herbivory on total colonization but proportional colonization by different AM structures was affected on some sample dates where vertebrate herbivores had been removed, indicating a slight effect on fungal structure allocation. The results suggest that the type of herbivore and perhaps more importantly the intensity of grazing are key determinants of below-ground effects upon mycorrhizal-host plant symbiosis. The data suggest that the extent of mycorrhizal colonization within grass host plants is strongly influenced by C assimilation and allocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-007-0789-9 | DOI Listing |
Adv Biotechnol (Singap)
September 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Laboratorio de Ecología del Desierto, Departamento de Biología, Universidad de La Serena, La Serena, Chile.
The symbiosis between mycorrhizae fungi and plant roots is essential for plant establishment in nearly all terrestrial ecosystems. However, the role of mycorrhizal colonization (colM) in shaping root ecological strategies remains poorly understood. Emerging research identifies colM as a key trait influencing the multidimensional covariation of root traits within the Root Economic Space (RES), where a 'collaboration gradient' is proposed.
View Article and Find Full Text PDFAnn Bot
January 2025
Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.
Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).
Braz J Microbiol
January 2025
Department of Agriculture, Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras, PB, Brazil.
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Department of Biochemistry and Molecular Biology, Saitama University.
Root parasitic broomrape ( and spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!