Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.

Appl Microbiol Biotechnol

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.

Published: September 2007

A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0-6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4-8 degrees C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37 degrees C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-007-1067-9DOI Listing

Publication Analysis

Top Keywords

aspergillus niger
8
niger mya
8
mya 135
8
olive oil
8
constitutive lipase
8
mycelium-bound lipase
8
catalytic properties
4
mycelium-bound
4
properties mycelium-bound
4
mycelium-bound lipases
4

Similar Publications

Fermentation of ginseng extract is limited by the low concentration of compound K (CK), a bioactive ginsenoside. In this study, a novel approach combining fermentation with cellulase conversion was used to enhance CK production from high concentrations of American ginseng extract (AGE). The reaction conditions, including the feeding rate and concentrations of carbon source, enzyme type, AGE and enzyme concentrations, temperature, pH, and timing of enzyme addition, were optimized.

View Article and Find Full Text PDF

Phosphorus-solubilizing fungi promote the growth of P. Y. Li by regulating physiological and biochemical reactions and protecting enzyme system-related gene expression.

Front Genet

January 2025

Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.

Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.

View Article and Find Full Text PDF

Microbial metabolic enzymes play a crucial role in several biological processes that have a significant impact on growth and proliferation. Therefore, inhibiting specific key metabolic enzymes can be an applicable approach for developing antimicrobial agents that selectively target pathogens. In the current study, selenium nanoparticles (Se NPs) extracellularly biosynthesized by Nocardiopsis sp.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Construction of lignin-derived microcapsule anti-mildew system with excellent anti-loss performance for Masson pine wood protection.

Int J Biol Macromol

January 2025

Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China; College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Masson pine wood is widely used in living spaces, decoration, and construction. Owing to its high sugar content and tendency to mold. Masson pine wood has been treated with anti-mildew agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!