Background: Intracerebral microdialysis is a sensitive tool to analyse tissue biochemistry, but the value of this technique to monitor cerebral metabolism during systemic haemorrhage is unknown. The present study was designed to assess changes of intracerebral microdialysis parameters both during systemic haemorrhage and after initiation of therapy.
Methods: Following approval of the Animal Investigational Committee, 18 healthy pigs underwent a penetrating liver trauma. Following haemodynamic decompensation, all animals received a hypertonic-hyperoncotic solution and either norepinephrine or arginine vasopressin, and bleeding was subsequently controlled. Extracellular cerebral concentrations of glucose (Glu), lactate (La), glycerol (Gly), and the lactate/pyruvate ratio (La/Py ratio) were assessed by microdialysis. Cerebral venous protein S-100B was determined. Haemodynamic data, blood gases, S-100B, and microdialysis variables were determined at baseline, at haemodynamic decompensation, and repeated after drug administration.
Results: Microdialysis measurements showed an increase of La, Gly, and La/Py ratio at BL Th compared to BL (mean +/- SEM; La 2.4 +/- 0.2 vs. 1.4 +/- 0.2 mmol x l(-1), p < 0.01; Gly 37 +/- 7 vs. 27 +/- 6 micromol x l(-1), n.s.; La/Py ratio 50 +/- 8 vs. 30 +/- 4, p < 0.01), followed by a further increase during the therapy phase (La 3.4 +/- 0.3 mmol x l(-1); Gly 69 +/- 10 micromol x l(-1); La/Py ratio 58 +/- 8; p < 0.001, respectively). Cerebral venous protein S-100B increased at decompensation and after therapy, but decreased close to baseline values after 90 min of therapy.
Conclusions: In this model of systemic haemorrhage, changes of cerebral energy metabolism detected by intracerebral microdialysis indicated anaerobic glycolysis and degradation of cellular membranes throughout the study period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00701-007-1231-0 | DOI Listing |
World Neurosurg
December 2024
Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA. Electronic address:
The subspecialty of neurocritical care has grown significantly over the past 40 years along with advancements in the medical and surgical management of neurological emergencies. The modern neuroscience intensive care unit (neuro-ICU) is grounded in close collaboration between neurointensivists and neurosurgeons in the management of patients with such conditions as ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hemorrhage, subdural hematomas, and traumatic brain injury. Neuro-ICUs are also capable of specialized monitoring such as serial neurological examinations by trained neuro-ICU nurses; invasive monitoring of intracranial pressure, cerebral oxygenation, and cerebral hemodynamics; cerebral microdialysis; and noninvasive monitoring, including the use of pupillometry, ultrasound monitoring of optic nerve sheath diameters, transcranial Doppler ultrasonography, near-infrared spectroscopy, and continuous electroencephalography.
View Article and Find Full Text PDFCancer Chemother Pharmacol
December 2024
City of Hope Comprehensive Cancer Center, Department of Medical Oncology and Therapeutics Research, Duarte, CA, USA.
Anal Chem
October 2024
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
J Neurosci Methods
November 2024
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel. Electronic address:
Background: Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain.
New Method: We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice.
World Neurosurg
July 2024
Department of Neurological Surgery, University of California Irvine, Orange, California, USA.
Objective: The local effects of an intracerebral hemorrhage (ICH) on surrounding brain tissue can be detected bedside using multimodal brain monitoring techniques. The aim of this study is to design a gradient boosting regression model using the R package boostmtree with the ability to predict lactate-pyruvate ratio measurements in ICH.
Methods: We performed a retrospective analysis of 6 spontaneous ICH and 6 traumatic ICH patients who underwent surgical removal of the clot with microdialysis catheters placed in the perihematomal zone.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!