We have developed a biological micro-electromechanical system (Bio-MEMS) device consisting of surface-modified microfabricated silicon cantilevers and an AFM detection apparatus for the study of cultured myotubes. With this system we are able to selectively stimulate the myotubes as well as report on a variety of physiological properties of the myotubes in real time and in a high-throughput manner. This system will serve as the foundation for future work integrating multiple tissue types for the creation of Bio-MEMS analogues of complex tissues and biological circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b617939h | DOI Listing |
Micromachines (Basel)
July 2024
College of Information Science and Technology, Donghua University, Shanghai 201620, China.
Biosens Bioelectron
October 2024
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. Electronic address:
Electronic communication in natural systems makes use, inter alia, of molecular transmission, where electron transfer occurs within networks of redox reactions, which play a vital role in many physiological systems. In view of the limited understanding of redox signaling, we developed an approach and an electrochemical-optical lab-on-a-chip to observe cellular responses in localized redox environments. The developed fluidic micro-system uses electrogenetic bacteria in which a cellular response is activated to electrically and chemically induced stimulations.
View Article and Find Full Text PDFBiosens Bioelectron
August 2024
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States. Electronic address:
We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells.
View Article and Find Full Text PDFJ Biol Eng
August 2023
Faculty of Life Sciences, School of Optometry & Visual Science, Bar Ilan University, 5290002, Ramat Gan, Israel.
Background: Tissue-integrated micro-electronic devices for neural stimulation hold great potential in restoring the functionality of degenerated organs, specifically, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality.
Approach: Here we describe the optimization of the fabrication process of a bio-functionalized 3D high-resolution 1mm circular subretinal implant composed of SU-8 polymer integrated with dense gold microelectrodes (23μm pitch) passivated with 3D micro-well-like structures (20μm diameter, 3μm resolution).
Drug Deliv Transl Res
February 2024
Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Most topical drug delivery techniques do not provide therapeutic concentrations for treatment of surgical site and other local infections and, therefore, require some kind of enhancement, such as physical methods like microneedles, the subject of the present investigation. Here, controlled-release long-lasting antibacterial polylactic acid (PLA) microneedles containing 1, 3, and 5% silver nanoparticles (AgNP) were prepared using micro-molding solvent-casting technique. Microneedles were characterized using optical microscopy, SEM, FTIR, XRD, and DSC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!