We report the dimerization of a mono-ruthenium(III) substituted alpha-Keggin-type tungstosilicate [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) to a micro-oxo-bridged dimer [{alpha-SiW(11)O(39)Ru(m)}2O](n-) (m = III, n = 12; m = IV/III, n = 11; m = IV, n = 10). Single crystal X-ray structure analysis of Rb(10)[{alpha-SiW(11)O(39)Ru(IV)}2O].9.5H2O (triclinic, P1, with a = 12.7650(6) A, b = 18.9399(10) A, c = 20.2290(10) A, alpha = 72.876(3) degrees, beta = 88.447(3) degrees, gamma = 80.926(3) degrees, V = 4614.5(4) A(3), Z = 2) reveals that two mono-ruthenium substituted tungstosilicate alpha-Keggin units are connected through micro-oxo-bridging Ru-O-Ru bonds. Solution (183)W-NMR of [{SiW(11)O(39)Ru(IV)}2O](10-) resulted in six peaks (-63, -92, -110, -128, -132, and -143 ppm, intensities 2 : 2 : 1 : 2 : 2 : 2) confirming that the micro-oxo bridged dimer structure is maintained in aqueous solution. The dimerization mechanism is presumably initiated by deprotonation of the aqua-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) leading to a hydroxy-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(OH)](6-). Dimerization of two hydroxy-ruthenium complexes produces the micro-oxo bridged dimer [{alpha-SiW(11)O(39)Ru(III)}2O](12-) and a water molecule. The Ru(III) containing dimer is oxidized by molecular oxygen to produce a mixed valence species [{alpha-SiW(11)O(39)Ru(IV-III)}2O](11-), and further oxidation results in the Ru(IV) containing [{alpha-SiW(11)O(39)Ru(IV)}2O](10-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b702813j | DOI Listing |
Dalton Trans
March 2016
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan. and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.
Both the α1- and the α2-isomers of mono-ruthenium (Ru)-substituted Dawson-type phosphotungstates with terminal aqua ligands, [α1-P2W17O61Ru(III)(H2O)](7-) (α1-RuH2O) and [α2-P2W17O61Ru(III)(H2O)](7-) (α2-RuH2O), were prepared in pure form by cleavage of the Ru-S bond of the corresponding DMSO derivatives, [α1-P2W17O61Ru(DMSO)](8-) (α1-RuDMSO) and [α2-P2W17O61Ru(DMSO)](8-) (α2-RuDMSO), respectively. Redox studies indicated that α1-RuH2O and α2-RuH2O show proton-coupled electron transfer (PCET), and the Ru(III)(H2O) species was reversibly reduced to Ru(II)(H2O) species and oxidized to Ru(IV)([double bond, length as m-dash]O) species and further to Ru(V)([double bond, length as m-dash]O) species in aqueous solution depending on the pH. Their redox potentials and thermal stabilities were compared with those of the corresponding α-Keggin-type derivatives ([α-XW11O39Ru(H2O)](n-); X = Si(4+) (n = 5), Ge(4+) (n = 5), or P(5+) (n = 4)).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2014
Institute of Functional Material Chemistry, Faculty of Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China.
Density functional theory (DFT) calculations and natural bond orbital (NBO) analysis were carried out to investigate the electronic structures and bonding features between the ruthenium(ii) atom and the SO2 molecule in two ruthenium-sulfur dioxide (SO2) adducts, trans-Ru(NH3)4(SO2)Cl(+) and [{SiW11O39}Ru(II)(SO2)](6-). In addition, the bonding interactions between SO2 and the metal-ruthenium fragment were determined by binding energy (ΔEabs) calculation and electronic structures. The results indicate that the η(1)-S-planar model in both trans-Ru(NH3)4(SO2)Cl(+) and [{SiW11O39}Ru(II)(SO2)](6-) are more favorable.
View Article and Find Full Text PDFDalton Trans
May 2013
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
The tetrabutylammonium (TBA) salt of a mono-ruthenium(III)-substituted α-Keggin-type silicotungstate with a 4,4'-bipyridine (bipy) ligand, TBA5[α-SiW11O39Ru(III)(bipy)] (1), which is soluble in various organic solvents, was prepared by a cation exchange reaction of Cs5[α-SiW11O39Ru(III)(bipy)] with tetrabutylammonium bromide. Compound 1 was characterised using IR, (1)H-NMR, elemental analysis, single crystal X-ray analysis, X-ray absorption near-edge structure (XANES) analysis (Ru L3-edge), electron spin resonance (ESR), cyclic voltammetry (CV) and UV-Vis. Single crystal X-ray analysis of 1 revealed that the Ru(III) unit was incorporated into the α-Keggin-type silicotungstate framework and coordinated by a bipy molecule through a Ru-N bond.
View Article and Find Full Text PDFDalton Trans
September 2012
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
A new pathway for the preparation of mono-ruthenium (Ru)(iii)-substituted Keggin-type heteropolytungstates with an aqua ligand, [PW(11)O(39)Ru(iii)(H(2)O)](4-) (1a), [SiW(11)O(39)Ru(iii)(H(2)O)](5-) (1b) and [GeW(11)O(39)Ru(iii)(H(2)O)](5-) (1c), using [Ru(ii)(benzene)Cl(2)](2) as a Ru source was described. Compounds 1a-1c were prepared by reacting [XW(11)O(39)](n-) (X = P, Si and Ge) with [Ru(ii)(benzene)Cl(2)](2) under hydrothermal condition and were isolated as caesium salts. Ru(benzene)-supported heteropolytungstates, [PW(11)O(39){Ru(ii)(benzene)(H(2)O)}](5-) (2a), [SiW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2b) and [GeW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2c), were first produced in the reaction media, and then transformed to 1a, 1b and 1c, respectively, under hydrothermal conditions.
View Article and Find Full Text PDFDalton Trans
March 2011
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
High-valent transition-metal-substituted Keggin-type polyoxometalates (POMs) are active and robust oxidation catalyst. The important oxidized intermediates of these POM complexes are very difficult to be characterized by using the experimental method, and thus no detail information is available on such species. In the present paper, density functional theory (DFT) calculations have been carried out to characterize the electronic structures of a series of mono-ruthenium-substituted Keggin-type POMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!