Surface enhanced Raman scattering (SERS) has been used to detect bacteria captured by polyclonal antibodies sorbed onto protein-A-modified silver nanoparticles. The selectivity and discrimination of the technique were assured by using a specific antibody to the model bacterium, Escherichia coli. As the SERS enhancement mechanism depends upon the metal surface proximity, 8 nm was considered as the optimum distance between the bacterium and the nanoparticle surface. Spectral reproducibility was verified using Principal Components Analysis to differentiate the clusters corresponding to the biomolecules and/or bacteria sorbed onto nanoparticles. Compared to the normal Raman spectrum, the SERS technique resulted in an intensity enhancement of over 20-fold.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b701160aDOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
raman-based detection
4
detection bacteria
4
bacteria silver
4
nanoparticles conjugated
4
conjugated antibodies
4
antibodies surface
4
surface enhanced
4
enhanced raman
4
raman scattering
4

Similar Publications

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Silver nanoparticle-induced antimicrobial resistance in Pseudomonas aeruginosa and Salmonella spp. isolates from an urban lake.

Environ Pollut

January 2025

Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL 62026. Electronic address:

The antimicrobial properties and widespread incorporation of silver nanoparticles (AgNPs) into consumer products have raised concerns about their potential impact on public health and the environment. This study examined citrate-coated and uncoated AgNPs' antimicrobial effects on microbial growth and their potential to induce antimicrobial resistance (AMR) in the natural environment. We isolated Pseudomonas aeruginosa and Salmonella spp.

View Article and Find Full Text PDF

Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.

View Article and Find Full Text PDF

Microorganisms are becoming resistant to drugs and antimicrobials, making it a significantly critical global issue. Nosocomial infections are resulting in alarmingly increasing rates of morbidity and mortality. Plant derived compounds hold numerous antimicrobial properties, making them a very capable source to counteract resistant microbial strains.

View Article and Find Full Text PDF

This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!