Two experiments evaluated effects of added pantothenic acid on performance of growing-finishing pigs. In Exp. 1, 156 pigs (PIC, initial BW = 25.7 kg) were used in a 3 x 2 x 2 factorial to evaluate the effects of added pantothenic acid (PA; 0, 22.5, or 45 ppm), ractopamine.HCl (RAC; 0 or 10 mg/kg), and sex on growth performance and carcass traits. Pigs were fed increasing PA from 25.7 to 123.6 kg (d 0 to 98) and RAC for the last 28 d before slaughter. Increasing the amount of added PA had no effect (P > 0.40) on ADG, ADFI, or G:F from d 0 to 70. A PA x sex interaction (P < 0.03) was observed for ADG and G:F from d 71 to 98. Increasing the amount of added PA increased ADG and G:F in gilts, but not in barrows. Increasing the amount of added PA had no effect (P > 0.38) on carcass traits. Added RAC increased (P < 0.01) ADG and G:F for d 71 to 98 and d 0 to 98 and increased (P < 0.01) LM area and percentage lean. In Exp. 2, 1,080 pigs (PIC, initial BW = 40.4 kg, final BW = 123.6 kg) were used to determine the effects of increasing PA on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial finishing facility. Pigs were fed 0, 22.5, 45.0, or 90 mg/kg of added PA. Increasing the amount of added PA had no effect (P > 0.45) on ADG, ADFI, or G:F, and no differences were observed (P > 0.07) for carcass traits. In summary, adding dietary PA to diets during the growing-finishing phase did not provide any advantages in growth performance or carcass composition of growing-finishing pigs. Furthermore, it appears that the pantothenic acid in corn and soybean meal may be sufficient to meet the requirements of 25- to 120-kg pigs.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2005-550DOI Listing

Publication Analysis

Top Keywords

pantothenic acid
16
growth performance
16
performance carcass
16
growing-finishing pigs
16
increasing amount
16
effects pantothenic
12
pigs fed
12
carcass traits
12
pigs
9
carcass characteristics
8

Similar Publications

Untargeted LC-HRMS analyses reveal metabolomic specificities between wine yeast strains selected for their malic acid production.

Food Chem

December 2024

BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France; UMR OENO, Université de Bordeaux, INRAE, INP, BSA, ISVV, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France. Electronic address:

The alcoholic fermentation of wine is mostly achieved by the species Saccharomyces cerevisiae that display a large variability for their ability to consume or produce malic acid. To better characterize the metabolism of such group of strains we explored their non-volatile metabolome using an untargeted LC-HRMS approach. The chemical classes and the putative structures of several hundred compounds where annotated using MS2 spectra using the SIRIUS software.

View Article and Find Full Text PDF

The cell-free supernatant of (LCFS) is considered a potential natural antimicrobial agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of CMCC(B)54002 (_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic pathways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA biosynthesis, and the TCA cycle.

View Article and Find Full Text PDF

Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.

View Article and Find Full Text PDF

Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis.

J Ethnopharmacol

December 2024

State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China. Electronic address:

Ethnopharmacological Relevance: Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear.

View Article and Find Full Text PDF

Background: Folate is an important one-carbon cycle donor involved in the synthesis of purines, thymine, pantothenic acid, serine and glycine. The present study aimed to explore the capacity of Lactiplantibacillus plantarum subsp. plantarum (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!