A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport of free 211At and 125I- in thyroid epithelial cells: effects of anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid on apical efflux and cellular retention. | LitMetric

Introduction: Astatine ((211)At; alpha-emitter; t(1/2)=7.21 h) shares several features with its halogen neighbour iodine. In the present study, we investigated whether 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) can be used to increase the cellular retention time of (211)At and radioiodide in thyroid epithelial cells.

Methods: The transepithelial transport and cellular uptake of (211)At and (125)I(-) were studied simultaneously in porcine thyrocytes cultured in bicameral chambers. The cells were prestimulated with thyroid-stimulating hormone (TSH) or epidermal growth factor (EGF) for 48 h. In addition, the acute effects of DIDS and forskolin were investigated.

Results: The transepithelial transport of both radionuclides was stimulated by TSH and down-regulated by EGF. DIDS rapidly reduced the efflux and increased the cellular content of (125)I(-) in control and TSH-stimulated cells, whereas DIDS had no effect on (125)I(-) transport in EGF-treated cells. DIDS blocked the (211)At efflux only in TSH-stimulated cells. Unexpectedly, DIDS caused an accelerated efflux of (211)At in both control and EGF-stimulated cells and, furthermore, reduced the cellular content of (211)At in the EGF-stimulated cultures. DIDS had no effect on the forskolin-induced efflux of the two radionuclides.

Conclusions: The magnitude of thyroidal (211)At uptake and efflux is similar to that of (125)I(-), strongly dependent on the functional activity of the cells. However, (211)At efflux likely involves several permeating mechanisms with different sensitivity to DIDS, which are at least partly not shared by (125)I(-). The results suggest that anion channel blockage is potentially useful to increase the absorbed dose from both (211)At and radioiodine in NIS-expressing tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2007.03.012DOI Listing

Publication Analysis

Top Keywords

211at
10
211at 125i-
8
thyroid epithelial
8
anion channel
8
44'-diisothiocyanostilbene-22'-disulfonic acid
8
cellular retention
8
dids
8
transepithelial transport
8
cellular content
8
tsh-stimulated cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!