Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells.

Biomaterials

Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore NUS Tissue Engineering Program (NUSTEP), National University Hospital, Lower Kent Ridge Road, Singapore 119074, Republic of Singapore.

Published: October 2007

In this study a 3-D alginate microbead platform was coated with cartilaginous extracellular matrix (ECM) components to emulate chondrogenic microenvironment in vivo for the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). BMSCs were seeded onto the microbead surface and the effect of the modified microbead on BMSC adhesion, proliferation and chondrogenic differentiation was studied, and compared to chondrogenesis in conventional pellet culture. Our results indicated that microbead system promoted BMSC proliferation and protein deposition resulting in the formation of bigger aggregates compared to conventional pellet culture. Analysis of the aggregates indicated that chondroitin sulfate (CS)- and Col2-coated microbeads enhanced the chondrogenic differentiation of hBMSCs, with increasing formation of glycosaminoglycan (GAG) and collagen II deposition in histology, immunohistochemistry and real time PCR analysis. In addition, Col2-coated microbeads resulted in hypertrophic maturation of the differentiated chondrocytes, similar to conventional pellet culture, while CS-coated microbeads were able to retain the pre-hypertrophy state of the differentiated cells. Our result suggested that provision of suitable cartilaginous microenvironment in a 3-D system can promote the chondrogenic differentiation of BMSC and influence the phenotype of resulting chondrocytes. Our microbead system provides an easy method of processing a 3-D alginate system that allows the possibility of scaling up chondrogenic pellet production for clinical application, while the modifiable microbeads also provide an adjustable 3-D platform for the study of co-interaction of ECM and differentiation factors during the stem cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2007.05.039DOI Listing

Publication Analysis

Top Keywords

chondrogenic differentiation
16
conventional pellet
12
pellet culture
12
mesenchymal stem
8
stem cells
8
3-d alginate
8
microbead system
8
col2-coated microbeads
8
differentiation
7
chondrogenic
6

Similar Publications

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Identification of human cranio-maxillofacial skeletal stem cells for mandibular development.

Sci Adv

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China.

Compared with long bone that arises from the mesoderm, the major portion of the maxillofacial bones and the front bone of the skull are derived from cranial neural crest cells and undergo intramembranous ossification. Human skeletal stem cells have been identified in embryonic and fetal long bones. Here, we describe a single-cell atlas of the human embryonic mandible and identify a population of cranio-maxillofacial skeletal stem cells (CMSSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!