Photoluminescence from water-soluble BSA-protected gold nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc

Chongqing Municipal Key Laboratory on Luminescence and Real-time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China.

Published: March 2008

The photoluminescence from water-soluble gold nanoparticles, each composed of a 5.1 nm gold core and a bovine serum albumin (BSA)-protected layer, has been observed. The maximal excitation and the maximal emission wavelength are at 320 and 404 nm, respectively. The photoluminescence quantum yield is estimated as 0.053+/-0.0070, at room temperature. The mechanism of the luminescence is hypothesized to be associated with interband transitions between the filled 5d(10) band and 6(sp)(1) conduction band. The photoluminescence is sensitive to pH, organic solvents and metal ions. These observations suggest that this nanoparticles are a viable alternative to organic fluorophores or semiconductor nanoparticles for biological labeling and imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2007.05.022DOI Listing

Publication Analysis

Top Keywords

photoluminescence water-soluble
8
gold nanoparticles
8
photoluminescence
4
water-soluble bsa-protected
4
bsa-protected gold
4
nanoparticles
4
nanoparticles photoluminescence
4
water-soluble gold
4
nanoparticles composed
4
composed gold
4

Similar Publications

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging.

Adv Sci (Weinh)

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.

The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging.

View Article and Find Full Text PDF

A ratiometric fluorescent probe based on water-soluble CsPbX (Br/I) perovskite nanocrystals for sensitive detection of tetracycline.

Mikrochim Acta

December 2024

Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.

A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.

View Article and Find Full Text PDF

This study presents a mild, one-pot synthetic approach for the synthesis of multicolor, water soluble, photo luminescent CdS and CdSe quantum dots (QDs). To achieve this goal, cyclic peptides containing cysteine residues are rationally designed and synthesized. Among the peptides tested, those containing two cysteine residues exhibit superior stabilizing properties, ensuring the solubility and long-term stability of the QDs in aqueous solutions for several months.

View Article and Find Full Text PDF

Manipulation of defect state emission in Zn chalcogenide quantum dots and their effects on chlorophyll spectral response.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye; Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye. Electronic address:

Water soluble Zn based quantum dots (QDs) are of interest due to their biocompatibility and less toxic features. They have been frequently used in studies related to biotechnology, especially in agriculture studies. However, to control the optical properties of Zn based QDs has still been a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!