The influence of photoirradiation on vesicles containing a Malachite Green leuconitrile derivative carrying a long alkyl chain, affording photogenerated amphiphilicity, was investigated. The photoresponsive Malachite Green leuconitrile derivative was embedded in the vesicle bilayer of two single-tailed amphiphiles with oppositely charged head groups consisting of cetyltrimethylammonium chloride (CTAC) and sodium octyl sulfate (SOS). Transmission electron microscopy, which was used for observing photoinduced structural change in the vesicles, demonstrated that photoirradiation of the vesicles containing the Malachite Green leuconitrile derivative increased the average size of the vesicle diameter from 116 to 243 nm in the [CTAC]/[SOS] = 0.48 system. The mechanism for vesicle enlargement was studied with fluorescent probe molecules. The photoinduced change in the vesicle size can be explained by the destabilization of the vesicle bilayer, which is perturbed by photogenerated amphiphilicity. In addition, it was shown that the fusion process arising from the destabilized bilayer contributed to the increase in vesicle size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la700831z | DOI Listing |
Int J Biol Macromol
December 2024
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
The efficacy of the nanocomposite of manganese dioxide and diosgenin-incorporated chitosan (MnO/Dio@CS) was assessed by studying the photodegradation of two organic dyes, Acid Green (AG) and Malachite Green Oxalate (MGO), under visible light irradiation. The synthesized MnO/Dio@CS nanocomposites were characterized by Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy. The MnO/Dio@CS nanocomposites exhibited exceptional photocatalytic efficacy, prolonged durability, and quick degradation of the dye solution to 87.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, College of Science, Wollo University, P.O.Box 1145, Dessie, Ethiopia.
The aquatic ecosystem is negatively impacted by organic dye contamination, which is now one of the factors leading to environmental pollution. The present investigation involved the synthesis of nanocellulose (NC) and nanocellulose modified with NiO (NC/NiO) composite using acid hydrolysis and a one-step precipitation technique for NC and NiO, respectively. Malachite green (MG) dye was catalytically removed from an aqueous solution using the two products, which were mechanically homogenized.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:
Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.
View Article and Find Full Text PDFAnal Chem
December 2024
Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Lysosomes are acidic membrane-bound organelles that aid digestion, excretion, and cell renewal. The lysosomal membranes are essential for maintaining lysosomal functions and cellular homeostasis. In this work, we developed a molecular "NOR" logic gate, , by introducing malachite green into the spirocyclic rhodamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!