Epididymal maturation is associated with the activation of a cAMP-induced tyrosine phosphorylation cascade, which is ultimately associated with the expression of capacitation-dependent sperm functions, such as hyperactivated movement and acrosomal exocytosis. As spermatozoa progress through the epididymis they first acquire the capacity to phosphorylate tyrosine on targets on the principal piece, followed by the midpiece. By the time these cells have reached the cauda epididymidis they can phosphorylate the entire tail from neck to endpiece. This particular pattern of phosphorylation is associated with the ontogeny of fully functional spermatozoa that are capable of fertilizing the oocyte. Proteomic analyses indicate that this change is associated with the phosphorylation of several mitochondrial proteins, creation of a mitochondrial membrane potential and activation of mitochondrial free radical generation. At least in rodent species, activation of sperm mitochondria appears to be a particularly important part of epididymal maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7262.2007.00280.x | DOI Listing |
Domest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
The aim of this study was to explore the role of the ZnT9 protein in obesity-induced sperm maturation disorders in men. We generated a mouse model of obesity-induced weak spermatogenesis via a high-fat diet (HFD) for 10 weeks. In addition to the HFD, a 5-week intervention of salubrinal (SAL) (an inhibitor of endoplasmic reticulum stress) (1 mg/kg/day), ZnSO (15 mg/kg/day), and their combination was started at week 6, after which sperm viability and epididymal tissue damage were assessed.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.
The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.
View Article and Find Full Text PDFNat Rev Urol
January 2025
Discipline of Biological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia.
Multiple conditions can cause hypoxia in the testis, including exposure to high altitude, sleep apnoea, testicular torsion and varicocele. Varicocele accounts for up to 44% of instances of primary infertility, but the cumulative contribution of hypoxic conditions to male infertility is undefined. Results of controlled hypobaric hypoxia studies have demonstrated a substantial detrimental effect of short-term and long-term exposures on sperm; however, downstream effects on embryo development and offspring health are less well understood.
View Article and Find Full Text PDFAndrology
January 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!