Background: Lung ischemia-reperfusion injury (LIRI) is postulated to occur biphasically. Donor pulmonary macrophages mediate early injury, and neutrophil-dependent injury predominates in the later phase of LIRI. We hypothesized that the biphasic response to LIRI would be attenuated by the administration of gadolinium, a known pulmonary macrophage inhibitor, and inhaled nitric oxide (NO), a pulmonary vasodilator that also interferes with neutrophil chemotaxis.

Methods: Using our isolated, ventilated, blood-perfused rabbit lung model, study groups (n = 10 per group) underwent two hours of reperfusion after 18 hours of cold ischemia (4 degrees C). Lungs received gadolinium alone, or inhaled NO in the presence or absence of macrophage inhibition with gadolinium.

Results: Compared with control animals, pulmonary macrophage inhibition with the concurrent administration of inhaled NO increased lung compliance (p < 0.01) and oxygenation (p = 0.03), while also decreasing pulmonary artery pressure (p < 0.01), myeloperoxidase content by 63% (p < 0.01), wet to dry ratios by 23% (p < 0.01), and lung tissue (p < 0.01) and bronchoalveolar lavage tumor necrosis factor-alpha (TNF-alpha) protein levels (p < 0.01).

Conclusions: The severity of LIRI was most significantly reduced by the inhibition of pulmonary macrophages and the concomitant use of inhaled NO. Pulmonary macrophages, likely through the elaboration of proinflammatory cytokines such as TNF-alpha, not only cause early injury themselves but also prime cells such as neutrophils to injure lungs in the later stages of LIRI. The LIRI was effectively blunted by the reduction of macrophage-dependent injury by gadolinium while inhaled NO also attenuated injury by reducing pulmonary hypertension and minimizing neutrophil sequestration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2007.02.036DOI Listing

Publication Analysis

Top Keywords

pulmonary macrophage
12
macrophage inhibition
12
pulmonary macrophages
12
pulmonary
9
inhaled nitric
8
nitric oxide
8
lung ischemia-reperfusion
8
ischemia-reperfusion injury
8
early injury
8
gadolinium inhaled
8

Similar Publications

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination.

Inflammation

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

A Modified Ligature-Induced Peri-Implantitis Murine Model and RNA Sequencing Analysis Compared With Human Subjects.

J Clin Periodontol

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China.

Aim: To propose a modified method for establishing a peri-implantitis murine model, assess the gene expression profile and immune cell infiltration of the gingiva and alveolar bone, and evaluate the transcriptomic similarity between patients with peri-implantitis and the corresponding murine model.

Materials And Methods: A ligature-induced peri-implantitis murine model was established using an immediate implant placement approach. RNA sequencing was performed to determine the transcriptomic profiles of peri-implant tissues from mice, patients with peri-implantitis and healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!