Background: Increased circumferential-radial shear in the midlateral left ventricle adjacent to ischemic myocardium has been observed during acute midcircumflex ischemia in open-chest animals. Extending this work, we studied transmural strains in closed-chest animals during acute proximal-circumflex (pCX) and proximal-left anterior descending (pLAD) occlusions.

Methods: Six sheep had radiopaque markers implanted to silhouette the left ventricle and measure regional systolic fractional area shortening; three transmural bead columns were inserted into the midlateral wall for transmural myocardial strain analysis. After 8 weeks, three-dimensional marker coordinates were obtained using biplane videofluoroscopy, both before and during separate 1-minute pLAD and pCX balloon occlusions. Systolic strains were assessed along circumferential, longitudinal, and radial axes, and then transformed into fiber strains using quantitative microstructural measurements.

Results: Acute pLAD occlusion and pCX occlusion caused similar hemodynamic insults. Systolic fractional area shortening revealed that the beads were in the ischemic territory during pCX occlusion, but adjacent to the ischemic myocardium during pLAD occlusion. Transmural circumferential strain and fiber shortening fell in the ischemic region during pCX occlusion, but remained normal when adjacent to the ischemic myocardium during pLAD occlusion. Circumferential-radial shear strain increased in the lateral left ventricle during pCX occlusion, but reversed in this same region during pLAD occlusion. Longitudinal-radial shear also decreased during pLAD occlusion.

Conclusions: Reversal of lateral wall circumferential-radial shear and decreased longitudinal-radial shear during acute pLAD occlusion reflects altered mechanical interaction between ischemic and nonischemic myocardium. Increased circumferential-radial shear during pCX occlusion also reflects mechanical interaction. The direction of circumferential-radial shear deformation depends on the location of the adjacent ischemic territory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2007.03.041DOI Listing

Publication Analysis

Top Keywords

circumferential-radial shear
20
plad occlusion
20
pcx occlusion
20
adjacent ischemic
16
left ventricle
12
ischemic myocardium
12
occlusion
11
lateral left
8
wall transmural
8
transmural strains
8

Similar Publications

Background And Objective: Accurate finite element (FE) simulation of the optic nerve head (ONH) depends on accurate mechanical properties of the load-bearing tissues. The peripapillary sclera in the ONH exhibits a depth-dependent, anisotropic, heterogeneous collagen fiber distribution. This study proposes a novel cable-in-solid modeling approach that mimics heterogeneous anisotropic collagen fiber distribution, validates the approach against published experimental biaxial tensile tests of scleral patches, and demonstrates its effectiveness in a complex model of the posterior human eye and ONH.

View Article and Find Full Text PDF

A computational simulation of cyclic stretch of an individual stem cell using a nonlinear model.

J Tissue Eng Regen Med

February 2019

Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Many experiments have shown that mechanical stimuli like cyclic strains might be helpful in stem cell differentiation. To maximize such differentiations efficiency, it is imperative to detect the cellular mechanical responses to these stimuli. The purpose of this research was to show that a newly presented hyper-viscoelastic model could correctly predict the level of stresses required to obtain a different response from a single mesenchymal stem cell cultured in a fibrin hydrogel block under a 10% cyclic strain at a frequency of 1 Hz, employing finite element method.

View Article and Find Full Text PDF

Unlabelled: This experimental study adopts a fracture mechanics strategy to investigate the mechanical cause of aortic dissection. Inflation of excised healthy bovine aortic rings with a cut longitudinal notch that extends into the media from the intima suggests that an intimal tear may propagate a nearly circumferential-longitudinal rupture surface that is similar to the delamination that occurs in aortic dissection. Radial and 45°-from-radial cut notch orientations, as seen in the thickness surface, produce similar circumferential crack propagation morphologies.

View Article and Find Full Text PDF

Residual and physiological functional strains in soft tissues are known to play an important role in modulating organ stress distributions. Yet, no known comprehensive information on residual strains exist, or non-invasive techniques to quantify in-vivo deformations for the aortic valve (AV) leaflets. Herein we present a completely non-invasive approach for determining heterogeneous strains - both functional and residual - in semilunar valves and apply it to normal human AV leaflets.

View Article and Find Full Text PDF

Crack Propagation and Its Shear Mechanisms in the Bovine Descending Aorta.

Cardiovasc Eng Technol

December 2015

Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.

Aortic dissection and rupture may involve circumferential shear stress in the circumferential-longitudinal plane. Inflation of bovine descending aortic ring specimens provides evidence of such shear from the non-uniform circumferential distortion of radial lines drawn on the circumferential-radial ring face. Delamination without tensile peeling induces cracks that propagate nearly circumferentially in the circumferential-longitudinal plane from the root of a radial cut representing rupture initiation in a ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!