Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF_0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP_1951), and a 12-stranded beta-barrel with a novel fold (V. parahaemolyticus VPA1032).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10969-007-9018-3 | DOI Listing |
J Med Internet Res
January 2025
Vibrent Health, Inc, Fairfax, VA, United States.
Background: Longitudinal cohort studies have traditionally relied on clinic-based recruitment models, which limit cohort diversity and the generalizability of research outcomes. Digital research platforms can be used to increase participant access, improve study engagement, streamline data collection, and increase data quality; however, the efficacy and sustainability of digitally enabled studies rely heavily on the design, implementation, and management of the digital platform being used.
Objective: We sought to design and build a secure, privacy-preserving, validated, participant-centric digital health research platform (DHRP) to recruit and enroll participants, collect multimodal data, and engage participants from diverse backgrounds in the National Institutes of Health's (NIH) All of Us Research Program (AOU).
Elife
January 2025
Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States.
The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
The cardiopulmonary nematode Angiostrongylus vasorum can cause severe disease in dogs, including coagulopathies manifesting with bleeding. We analysed A. vasorum excretory/secretory protein (ESP)-treated dog plasma and serum by N-terminome analysis using Terminal Amine Isotopic Labelling of Substrates (TAILS) to identify cleaved host substrates.
View Article and Find Full Text PDFGenetics
January 2025
EMBL-EBI - Non-Vertebrate Genomics Team, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK.
The rapid increase in the number of reference-quality genome assemblies presents significant new opportunities for genomic research. However, the absence of standardized naming conventions for genome assemblies and annotations across datasets creates substantial challenges. Inconsistent naming hinders the identification of correct assemblies, complicates the integration of bioinformatics pipelines, and makes it difficult to link assemblies across multiple resources.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Max Planck Institute for Biology Tübingen, Max-Planck Ring 5, Tuebingen, Germany, 72076;
Filamentous plant pathogens pose a severe threat to food security. Current estimates suggest up to 23% yield losses to pre- and post-harvest diseases and these losses are projected to increase due to climate change (Singh et al. 2023; Chaloner et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!