The thermodynamic effects of the disulfide bond of the fragment protein of the starch-binding domain of Aspergillus niger glucoamylase was investigated by measuring the thermal unfolding of the wild-type protein and its two mutant forms, Cys3Gly/Cys98Gly and Cys3Ser/Cys98Ser. The circular dichroism spectra and the thermodynamic parameters of binding with beta-cyclodextrin at 25 degrees C suggested that the native structures of the three proteins are essentially the same. Differential scanning calorimetry of the thermal unfolding of the proteins showed that the unfolding temperature t1/2 of the two mutant proteins decreased by about 10 degrees C as compared to the wild-type protein at pH 7.0. At t1/2 of the wild-type protein (52.7 degrees C), the mutant proteins destabilized by about 10 kJ mol(-1) in terms of the Gibbs energy change. It was found that the mutant proteins were quite stabilized in terms of enthalpy, but that a higher entropy change overwhelmed the enthalpic effect, resulting in destabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.70098DOI Listing

Publication Analysis

Top Keywords

thermal unfolding
12
wild-type protein
12
mutant proteins
12
thermodynamic effects
8
effects disulfide
8
disulfide bond
8
starch-binding domain
8
domain aspergillus
8
aspergillus niger
8
niger glucoamylase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!