Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to determine the modulus, hardness, and polymerization shrinkage of novel silsesquioxane (SSQ)-based nanocomposites synthesized for dental applications. Four novel SSQ materials were developed and mixed with control monomers in 5, 10, 20, and 50 wt% SSQ nanocomposite ratios and were evaluated for use as potential low-shrinkage composite restoratives. The postgel polymerization shrinkage of the hybrid materials was then investigated and compared with unfilled 1:1 (control) bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate/tri(ethylene glycol) dimethacrylate (Bis-GMA/TEGDMA) materials using a strain-monitoring device and test configuration. Mechanical properties, such as hardness and modulus, were determined using the depth-sensing microindentation approach. All samples investigated were polymerized using a dental light-curing unit (BISCO VIP) at 500 mW cm(-2) for 40 s. The results obtained were analyzed using analysis of variance/Scheffe's posthoc test at a significance level of 0.05. At 60 min postlight polymerization, postgel shrinkage associated with the control was found to be significantly higher than for all control/SSQ mixtures. Hardness and modulus were found to decrease with increased amount of SSQ monomers added, indicating that the incorporation of SSQ monomers into the control generally helps to reduce both the rigidity and the polymerization shrinkage. Therefore, in the correct formulation, SSQ materials have great potential to be used as low-shrinkage composite restoratives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0722.2007.00449.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!