Detailed knowledge of how networks of surface salt bridges contribute to protein thermal stability is essential not only to understand protein structure and function but also to design thermostable proteins for industrial applications. Experimental studies investigating thermodynamic stability through measurements of free energy associated with mutational alterations in proteins provide only macroscopic evidence regarding the structure of salt-bridge networks and assessment of their contribution to protein stability. Using explicit-solvent molecular dynamics simulations to provide insight on the atomic scale, we investigate here the structural stability, defined in terms of root-mean-square fluctuations, of a short polypeptide designed to fold into a stable trimeric coiled coil with a well-packed hydrophobic core and an optimal number of intra- and interhelical surface salt bridges. We find that the increase of configurational entropy of the backbone and side-chain atoms and decreased pair correlations of these with increased temperature are consistent with nearly constant atom-positional root-mean-square fluctuations, increased salt-bridge occupancies, and stronger electrostatic interactions in the coiled coil. Thus, our study of the coiled coil suggests a mechanism in which well-designed salt-bridge networks could accommodate stochastically the disorder of increased thermal motion to produce thermostability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206687 | PMC |
http://dx.doi.org/10.1110/ps.062542907 | DOI Listing |
J Gen Physiol
March 2025
Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively.
View Article and Find Full Text PDFJ Mol Graph Model
March 2025
Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression.
View Article and Find Full Text PDFMolecules
October 2024
Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA.
Recent breakthroughs in the determination of atomic resolution 3-D cryo-electron microscopy structures of membrane proteins present an unprecedented opportunity for drug discovery. Structure-based drug discovery utilizing in silico methods enables the study of dynamic connectivity of stable conformations induced by the drug in achieving its effect. With the ever-expanding computational power, simulations of this type reveal protein dynamics in the nano-, micro-, and even millisecond time scales.
View Article and Find Full Text PDFArch Biochem Biophys
November 2024
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia.
The APOE gene, encoding apolipoprotein E, is a predictor of longevity and age-related diseases. Despite numerous genetic studies, the data on molecular mechanisms by which apolipoprotein E affects the human phenotype remain incomplete due to the structural properties of the protein. Recently, a number of studies have used in silico drug discovery techniques based on protein-ligand docking, further highlighting the issue of lacking 3D structure of apolipoprotein E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!