Viruses on organic aggregates such as transparent exopolymeric particles (TEP) are not well investigated. The number of TEP-attached viruses was assessed along trophic gradients in the southwestern lagoon of New Caledonia by determining the fraction of viruses removed after magnetic isolation of TEP. In order to isolate TEP magnetically, TEP were formed in the presence of magnetic beads from submicrometer precursors collected along the trophic gradients. The mixed aggregates of TEP-beads-viruses were removed from solution with a magnetic field. The percentage of viruses associated with newly formed TEP averaged 8% (range, 3 to 13%) for most of the stations but was higher (ca. 30%) in one bay characterized by the low renewal rate of its water mass. The number of viruses (N) attached to TEP varied as a function of TEP size (d [in micrometers]) according to the formulas N = 100d(1.60) and N = 230d(1.75), respectively, for TEP occurring in water masses with short (i.e., <40 days) and long (i.e., >40 days) residence times. These two relationships imply that viral abundance decreases with TEP size, and they indicate that water residence time influences viral density and virus-bacterium interactions within aggregates. Our data suggest that the fraction of viruses attached to TEP is highest in areas characterized by a low renewal rate of the water mass and can constitute at times a significant fraction of total virus abundance. Due to the small distance between viruses and hosts on TEP, these particles may be hot spots for viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950989PMC
http://dx.doi.org/10.1128/AEM.00762-07DOI Listing

Publication Analysis

Top Keywords

trophic gradients
12
tep
11
transparent exopolymeric
8
exopolymeric particles
8
gradients southwestern
8
southwestern lagoon
8
lagoon caledonia
8
fraction viruses
8
characterized low
8
low renewal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!