We have found that FOXP3 is an oligomeric component of a large supramolecular complex. Certain FOXP3 mutants with single amino acid deletions in the leucine zipper domain of FOXP3 are associated with the X-linked autoimmunity-allergic dysregulation (XLAAD) and immunodysregulation, polyendocrinopathy and enteropathy, X-linked (IPEX) syndrome in humans. We report that the single amino acid deletion found in human XLAAD/IPEX patients within the leucine zipper domain of FOXP3 does not disrupt its ability to join the larger protein complex, but eliminates FOXP3 homo-oligomerization as well as heteromerization with FOXP1. We found that the zinc finger-leucine zipper domain region of FOXP3 is sufficient to mediate both homodimerization and homotetramerization. However, the same domain region from XLAAD/IPEX FOXP3 containing an E251 deletion prevents oligomerizaton and the protein remains monomeric. We also found that wild-type FOXP3 directly binds to the human IL-2 promoter, but the E251 deletion in FOXP3 in XLAAD/IPEX patient's T cells disrupts its association with the IL-2 promoter in vivo and in vitro, and limits repression of IL-2 transcription after T-cell activation. Our results suggest that compromising FOXP3 homo-oligomerization and hetero-oligomerization with the FOXP1 protein impairs DNA-binding properties leading to distinct biochemical phenotypes in humans with the XLAAD/IPEX autoimmune syndrome. This study explains some features of the pathogenesis of a disease syndrome that arises as a consequence of specific assembly failure of a transcriptional repressor due to certain mutations within the FOXP3 leucine zipper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxm043 | DOI Listing |
Nat Immunol
January 2025
Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA.
Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2024
Department of Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA) Riyadh 11481, Saudi Arabia.
Background: Multiple sclerosis (MS) is a chronic, immune-mediated neurological disorder in which the immune system mistakenly attacks the myelin sheath, affecting the communication between the brain and the rest of the body.
Objective: This study investigated the prophylactic use of peptide inhibitor of trans-endothelial migration (PEPITEM), a novel peptide, in alleviating experimental autoimmune encephalomyelitis (EAE), a mouse model for Multiple Sclerosis (MS).
Methods: Female C57BL/6 female mice were assigned to the control, untreated EAE, or PEPITEM group.
Gastro Hep Adv
September 2024
Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
Tregs play a central role in maintaining immune tolerance. Recent progress in the clinical application of Tregs underscores their potential for cell therapy. Nevertheless, a notable hurdle remains in producing functional Tregs .
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!