Background: Coffin-Lowry syndrome is a semi-dominant condition characterized by severe psychomotor retardation with facial, hand and skeletal malformations resulting from mutations in RSK2 gene, encoding for a serine/threonine kinase. More than 100 different mutations have been identified to date; however, about 50% of clinically diagnosed patients apparently do not have mutations. In order to exclude that these patients have RSK2 mutations missed by standard mutation detection techniques, a rapid and sensitive assay allowing evaluation of RSK2 activity was needed.
Methods: RSK2 capacity to phosphorylate a synthetic CREB-peptide in basal and PMA-stimulated conditions was evaluated in lymphoblasts from 3 patients with RSK2 mutations and normal controls.
Results: Patients RSK2 activity is normal in nonstimulated conditions but fails to grow following stimulation. The evaluation of the stimulated/non-stimulated activity ratio demonstrated a statistically significant impairment in patients.
Conclusions: We have set up an assay which allows the identification of even partial alterations of RSK2 activity and seems to give good results also in females with a balanced X-chromosome inactivation and thus with a presumably normal enzymatic activity in about 50% of cells. Moreover, our data seem to confirm previous reports of a potential direct correlation between the level of RSK2 activity and the severity of cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2007.05.016 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
Cancer Res Commun
December 2024
University of California, San Diego, La Jolla, CA, United States.
Tuspetinib (TUS) is a well-tolerated, once daily, oral kinase inhibitor in clinical development for treatment of AML. Nonclinical studies show that TUS targets key pro-survival kinases with IC50 values in the low nM range, including SYK, wildtype and mutant forms of FLT3, mutant but not wildtype forms of KIT, RSK2 and TAK1-TAB1 kinases, and indirectly suppresses expression of MCL1. Oral TUS markedly extended survival in subcutaneously and orthotopically inoculated xenograft models of FLT3 mutant human AML, was well tolerated, and delivered enhanced activity when combined with venetoclax or 5-azacytidine.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2024
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Introduction: The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies.
View Article and Find Full Text PDFBrain Res
February 2025
Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China. Electronic address:
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke.
View Article and Find Full Text PDFAnticancer Agents Med Chem
September 2024
School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China.
P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!