Photooxidation is a treatment that can render tissue less immunogenic and resistant to enzymatic degradation, while maintaining the mechanical properties of the material. The purpose of this study was to histologically examine the biocompatibility of photooxidized bovine osteochondral grafts when implanted into the rabbit. Two holes were drilled into the patellar groove of the rabbit knee. Photooxidized bovine osteochondral grafts were implanted into the holes. As a control, 1 surgically created hole in each rabbit was left to heal naturally. The animals were killed after 12 weeks. Histological analysis of the control sites indicated that fibrocartilage had begun to regenerate in the defect. Analysis of the grafts revealed a chronic, nonspecific inflammatory reaction. Active remodeling was observed in the graft bone, with "bridging" between host and graft bone evident. The articulating surface and majority of the graft cartilage remained undamaged. In a few instances, however, there was an inflammatory response to the base of the graft cartilage, near the subchondral plate. The surface of the graft cartilage was covered by a thin layer of fibrous tissue, and no viable chondrocytes were present. In most cases, there was no fusion between host and graft cartilage. The results from this study suggest that, while a biological reaction to the grafts occurred, the bone portion of the graft appeared to be in the process of remodeling, and the majority of the graft cartilage, most significantly the articulating surface, remained intact. Photooxidized osteochondral grafts show promise for use in the repair of osteochondral defects.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.jfas.2007.03.002DOI Listing

Publication Analysis

Top Keywords

graft cartilage
20
osteochondral grafts
16
photooxidized bovine
12
bovine osteochondral
12
grafts implanted
8
graft
8
graft bone
8
host graft
8
articulating surface
8
majority graft
8

Similar Publications

Purpose: Tympanoplasty is a surgical procedure performed to cure middle ear infections and restore normal middle ear function. It is one of the most common procedures in otological surgery. Since Wullstein described tympanoplasty, the microscope has been a widely used surgical tool in otological surgery.

View Article and Find Full Text PDF

Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration.

Histochem Cell Biol

January 2025

Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.

Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).

View Article and Find Full Text PDF

Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.

View Article and Find Full Text PDF

Introduction: Implantation of minced cartilage is a one-step-procedure that leads to satisfactory results in osteochondral defects.

Material And Methods: A retrospective review was performed on a consecutive cohort of patients that received minced cartilage with fibrin (MCF), minced cartilage with membrane and fibrin (MCMF) and minced cartilage with the "AutoCart"-procedure (MCAC) between January 2019 and December 2023. Radiological outcome parameters were evaluated via Magnet-Resonance-Tomography (MRI) within one year using Ankle-Osteoarthritis-Scoring-System (AOSS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!