The establishment of the monoterpenoid profile of Vitis vinifera L. cv. 'Fernão-Pires' white grape was achieved by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToF-MS). The plot of the first dimension versus the second dimension retention times using the m/z 93, 121, and 136 was used. The grapes were found to contain 56 monoterpenoids identified by GCxGC-ToF-MS. From these, 20 were reported for the first time in grapes. According to their chemical structure, the compounds were organized in different groups: monoterpene hydrocarbons and monoterpene oxygen-containing compounds, this later divided in oxides, alcohols (monoterpenols and monoterpendiols), aldehydes, esters, and ketones. A database composed by the retention indices of monoterpenoids calculated in the bi-dimensional column set was created, representing a developmental step in monoterpenoid analysis using a GCxGC system. Remarkable results were also obtained in terms of compound classification based on the organized structure of the peaks of structurally related compounds in the GCxGC contour plot. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This study proposes a methodology and provides data that can be applied to determine the monoterpenoid profile of grapes, and its extension to the analysis of musts, and wines. As monoterpenoids are secondary metabolites whose synthesis is encoded by variety-related genes, the terpenoid profile may be used as a way to trace its varietal origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2007.05.093 | DOI Listing |
Phys Chem Chem Phys
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.
View Article and Find Full Text PDFSci Rep
January 2025
Preparatory Institute for Engineering Studies of Kairouan, (I.P.E.I.K) University of Kairouan, Kairouan, Tunisia.
We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Lebanese International University, Beirut P.O. Box 146404, Lebanon.
The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFACS Nano
January 2025
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!